基于YOLOv2的眼疲劳识别系统

Chuanhui Lau, Hungyang Leong, Joonhuang Chuah, N. Kamarudin
{"title":"基于YOLOv2的眼疲劳识别系统","authors":"Chuanhui Lau, Hungyang Leong, Joonhuang Chuah, N. Kamarudin","doi":"10.1109/i-PACT52855.2021.9696747","DOIUrl":null,"url":null,"abstract":"The rapid increase in global population significantly drives the hiking demand for transportations. This trend further leads to the increase in the number of road traffic accidents globally. Based on a study, fatigue due to prolonged driving is one of the leading causes for traffic accidents. With a customized Graphical User Interface (GUI), this work aims to develop an eye fatigue recognition system using YOLOv2 model. The proposed method used PERCLOS and blink rate parameters as indicators to determine the alertness of the user. This proposed method achieved a real-time average accuracy of 99.23% in normal lighting conditions and 98.57% in low light conditions.","PeriodicalId":335956,"journal":{"name":"2021 Innovations in Power and Advanced Computing Technologies (i-PACT)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Eye Fatigue Recognition System using YOLOv2\",\"authors\":\"Chuanhui Lau, Hungyang Leong, Joonhuang Chuah, N. Kamarudin\",\"doi\":\"10.1109/i-PACT52855.2021.9696747\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid increase in global population significantly drives the hiking demand for transportations. This trend further leads to the increase in the number of road traffic accidents globally. Based on a study, fatigue due to prolonged driving is one of the leading causes for traffic accidents. With a customized Graphical User Interface (GUI), this work aims to develop an eye fatigue recognition system using YOLOv2 model. The proposed method used PERCLOS and blink rate parameters as indicators to determine the alertness of the user. This proposed method achieved a real-time average accuracy of 99.23% in normal lighting conditions and 98.57% in low light conditions.\",\"PeriodicalId\":335956,\"journal\":{\"name\":\"2021 Innovations in Power and Advanced Computing Technologies (i-PACT)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Innovations in Power and Advanced Computing Technologies (i-PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/i-PACT52855.2021.9696747\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Innovations in Power and Advanced Computing Technologies (i-PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/i-PACT52855.2021.9696747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全球人口的快速增长极大地推动了对交通工具的徒步旅行需求。这一趋势进一步导致全球道路交通事故数量的增加。根据一项研究,长时间驾驶引起的疲劳是导致交通事故的主要原因之一。通过定制化的图形用户界面(GUI),本工作旨在开发一个使用YOLOv2模型的眼疲劳识别系统。该方法采用PERCLOS和眨眼频率参数作为判断用户警觉性的指标。该方法在正常光照条件下的实时平均精度为99.23%,在弱光照条件下的实时平均精度为98.57%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Eye Fatigue Recognition System using YOLOv2
The rapid increase in global population significantly drives the hiking demand for transportations. This trend further leads to the increase in the number of road traffic accidents globally. Based on a study, fatigue due to prolonged driving is one of the leading causes for traffic accidents. With a customized Graphical User Interface (GUI), this work aims to develop an eye fatigue recognition system using YOLOv2 model. The proposed method used PERCLOS and blink rate parameters as indicators to determine the alertness of the user. This proposed method achieved a real-time average accuracy of 99.23% in normal lighting conditions and 98.57% in low light conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信