参数化任务图的符号划分和调度

M. Cosnard, E. Jeannot, Tao Yang
{"title":"参数化任务图的符号划分和调度","authors":"M. Cosnard, E. Jeannot, Tao Yang","doi":"10.1109/ICPADS.1998.741109","DOIUrl":null,"url":null,"abstract":"The DAG based task graph model has been found effective in scheduling for performance prediction and optimization of parallel applications. However the scheduling complexity and solution normally depend on the problem size. We propose a symbolic scheduling scheme for a parameterized task graph which models coarse grain DAG parallelism, independent of the problem size. The algorithm first derives symbolic clusters to a group of tasks in order to minimize communication while preserving parallelism, and then it evenly assigns task clusters to processors. The run time system executes clusters on each processor in a multithreaded fashion. The paper also presents preliminary experimental results to demonstrate the effectiveness of our techniques.","PeriodicalId":226947,"journal":{"name":"Proceedings 1998 International Conference on Parallel and Distributed Systems (Cat. No.98TB100250)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Symbolic partitioning and scheduling of parameterized task graphs\",\"authors\":\"M. Cosnard, E. Jeannot, Tao Yang\",\"doi\":\"10.1109/ICPADS.1998.741109\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The DAG based task graph model has been found effective in scheduling for performance prediction and optimization of parallel applications. However the scheduling complexity and solution normally depend on the problem size. We propose a symbolic scheduling scheme for a parameterized task graph which models coarse grain DAG parallelism, independent of the problem size. The algorithm first derives symbolic clusters to a group of tasks in order to minimize communication while preserving parallelism, and then it evenly assigns task clusters to processors. The run time system executes clusters on each processor in a multithreaded fashion. The paper also presents preliminary experimental results to demonstrate the effectiveness of our techniques.\",\"PeriodicalId\":226947,\"journal\":{\"name\":\"Proceedings 1998 International Conference on Parallel and Distributed Systems (Cat. No.98TB100250)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-12-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1998 International Conference on Parallel and Distributed Systems (Cat. No.98TB100250)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPADS.1998.741109\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1998 International Conference on Parallel and Distributed Systems (Cat. No.98TB100250)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPADS.1998.741109","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

基于DAG的任务图模型在并行应用程序的性能预测和优化调度方面是有效的。然而,调度复杂度和解决方案通常取决于问题的大小。我们提出了一种独立于问题大小的参数化任务图的符号调度方案,该方案模拟了粗粒度DAG并行性。该算法首先为一组任务派生符号簇,在保持并行性的同时最小化通信,然后将任务簇均匀地分配给处理器。运行时系统以多线程的方式在每个处理器上执行集群。本文还给出了初步的实验结果,以证明我们的技术的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symbolic partitioning and scheduling of parameterized task graphs
The DAG based task graph model has been found effective in scheduling for performance prediction and optimization of parallel applications. However the scheduling complexity and solution normally depend on the problem size. We propose a symbolic scheduling scheme for a parameterized task graph which models coarse grain DAG parallelism, independent of the problem size. The algorithm first derives symbolic clusters to a group of tasks in order to minimize communication while preserving parallelism, and then it evenly assigns task clusters to processors. The run time system executes clusters on each processor in a multithreaded fashion. The paper also presents preliminary experimental results to demonstrate the effectiveness of our techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信