Nirav H. Dave, Kermin Fleming, Myron King, Michael Pellauer, M. Vijayaraghavan
{"title":"基于Xilinx FPGA的矩阵乘法硬件加速","authors":"Nirav H. Dave, Kermin Fleming, Myron King, Michael Pellauer, M. Vijayaraghavan","doi":"10.1109/MEMCOD.2007.371239","DOIUrl":null,"url":null,"abstract":"The first MEMOCODE hardware/software co-design contest posed the following problem: optimize matrix-matrix multiplication in such a way that it is split between the FPGA and PowerPC on a Xilinx Virtex IIPro30. In this paper we discuss our solution, which we implemented on a Xilinx XUP development board with 256 MB of DRAM. The design was done by the five authors over a span of approximately 3 weeks, though of the 15 possible man-weeks, about 9 were actually spent working on this problem. All hardware design was done using Blue-spec SystemVerilog (BSV), with the exception of an imported Verilog multiplication unit, necessary only due to the limitations of the Xilinx FPGA toolflow optimizations.","PeriodicalId":345459,"journal":{"name":"2007 5th IEEE/ACM International Conference on Formal Methods and Models for Codesign (MEMOCODE 2007)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Hardware Acceleration of Matrix Multiplication on a Xilinx FPGA\",\"authors\":\"Nirav H. Dave, Kermin Fleming, Myron King, Michael Pellauer, M. Vijayaraghavan\",\"doi\":\"10.1109/MEMCOD.2007.371239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The first MEMOCODE hardware/software co-design contest posed the following problem: optimize matrix-matrix multiplication in such a way that it is split between the FPGA and PowerPC on a Xilinx Virtex IIPro30. In this paper we discuss our solution, which we implemented on a Xilinx XUP development board with 256 MB of DRAM. The design was done by the five authors over a span of approximately 3 weeks, though of the 15 possible man-weeks, about 9 were actually spent working on this problem. All hardware design was done using Blue-spec SystemVerilog (BSV), with the exception of an imported Verilog multiplication unit, necessary only due to the limitations of the Xilinx FPGA toolflow optimizations.\",\"PeriodicalId\":345459,\"journal\":{\"name\":\"2007 5th IEEE/ACM International Conference on Formal Methods and Models for Codesign (MEMOCODE 2007)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 5th IEEE/ACM International Conference on Formal Methods and Models for Codesign (MEMOCODE 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMCOD.2007.371239\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 5th IEEE/ACM International Conference on Formal Methods and Models for Codesign (MEMOCODE 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMCOD.2007.371239","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hardware Acceleration of Matrix Multiplication on a Xilinx FPGA
The first MEMOCODE hardware/software co-design contest posed the following problem: optimize matrix-matrix multiplication in such a way that it is split between the FPGA and PowerPC on a Xilinx Virtex IIPro30. In this paper we discuss our solution, which we implemented on a Xilinx XUP development board with 256 MB of DRAM. The design was done by the five authors over a span of approximately 3 weeks, though of the 15 possible man-weeks, about 9 were actually spent working on this problem. All hardware design was done using Blue-spec SystemVerilog (BSV), with the exception of an imported Verilog multiplication unit, necessary only due to the limitations of the Xilinx FPGA toolflow optimizations.