{"title":"基于角速率传感器的轮式机器人运动学控制","authors":"Diansheng Chen, Feng Bai, Lin Wu","doi":"10.1109/RAMECH.2008.4690885","DOIUrl":null,"url":null,"abstract":"To improve the navigation precision of the ground wheeled robot, implement the autonomous kinematics motion control, and overcome the yawing problem when only using an optical encoder, a small-sized, low cost and reusable independent angular rate sensor (gyroscope) module based on iMEMS technique is used. The kinematics model of the robot is explained, and the principle that a robot can move straight based on a gyroscope is proposed. The angular rate is sampled to get the yawing angle of the robot and then it is inputted into a digital PID controller with a dead zone. The incremental speeds of each of the two driving wheels are calculated to attenuate the deviation. Methods for the robot to turn a fixed angle or move along a polygon are also presented. Experiments show that these algorithms have effectively improved the performance the robot moves rather than using time-consuming algorithms or installing bulky and power cost computers.","PeriodicalId":320560,"journal":{"name":"2008 IEEE Conference on Robotics, Automation and Mechatronics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Kinematics control of wheeled robot based on angular rate sensors\",\"authors\":\"Diansheng Chen, Feng Bai, Lin Wu\",\"doi\":\"10.1109/RAMECH.2008.4690885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the navigation precision of the ground wheeled robot, implement the autonomous kinematics motion control, and overcome the yawing problem when only using an optical encoder, a small-sized, low cost and reusable independent angular rate sensor (gyroscope) module based on iMEMS technique is used. The kinematics model of the robot is explained, and the principle that a robot can move straight based on a gyroscope is proposed. The angular rate is sampled to get the yawing angle of the robot and then it is inputted into a digital PID controller with a dead zone. The incremental speeds of each of the two driving wheels are calculated to attenuate the deviation. Methods for the robot to turn a fixed angle or move along a polygon are also presented. Experiments show that these algorithms have effectively improved the performance the robot moves rather than using time-consuming algorithms or installing bulky and power cost computers.\",\"PeriodicalId\":320560,\"journal\":{\"name\":\"2008 IEEE Conference on Robotics, Automation and Mechatronics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE Conference on Robotics, Automation and Mechatronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RAMECH.2008.4690885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Conference on Robotics, Automation and Mechatronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAMECH.2008.4690885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kinematics control of wheeled robot based on angular rate sensors
To improve the navigation precision of the ground wheeled robot, implement the autonomous kinematics motion control, and overcome the yawing problem when only using an optical encoder, a small-sized, low cost and reusable independent angular rate sensor (gyroscope) module based on iMEMS technique is used. The kinematics model of the robot is explained, and the principle that a robot can move straight based on a gyroscope is proposed. The angular rate is sampled to get the yawing angle of the robot and then it is inputted into a digital PID controller with a dead zone. The incremental speeds of each of the two driving wheels are calculated to attenuate the deviation. Methods for the robot to turn a fixed angle or move along a polygon are also presented. Experiments show that these algorithms have effectively improved the performance the robot moves rather than using time-consuming algorithms or installing bulky and power cost computers.