{"title":"Sign H3re:使用数字笔的音频和运动数据识别符号和x -标记书写器","authors":"M. Schrapel, Dennis Grannemann, M. Rohs","doi":"10.1145/3543758.3543764","DOIUrl":null,"url":null,"abstract":"Although in many cases contracts can be made or ended digitally, laws require handwritten signatures in certain cases. Forgeries are a major challenge with digital contracts, as their validity is not always immediately apparent without forensic methods. Illiteracy or disabilities may result in a person being unable to write their full name. In this case x-mark signatures are used, which require a witness for validity. In cases of suspected fraud, the relationship of the witnesses must be questioned, which involves a great amount of effort. In this paper we use audio and motion data from a digital pen to identify users via handwritten symbols. We evaluated the performance our approach for 19 symbols in a study with 30 participants. We found that x-marks offer fewer individual features than other symbols like arrows or circles. By training on three samples and averaging three predictions we reach a mean F1-score of F1 = 0.87, using statistical and spectral features fed into SVMs.","PeriodicalId":318322,"journal":{"name":"Proceedings of Mensch und Computer 2022","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Sign H3re: Symbol and X-Mark Writer Identification Using Audio and Motion Data from a Digital Pen\",\"authors\":\"M. Schrapel, Dennis Grannemann, M. Rohs\",\"doi\":\"10.1145/3543758.3543764\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Although in many cases contracts can be made or ended digitally, laws require handwritten signatures in certain cases. Forgeries are a major challenge with digital contracts, as their validity is not always immediately apparent without forensic methods. Illiteracy or disabilities may result in a person being unable to write their full name. In this case x-mark signatures are used, which require a witness for validity. In cases of suspected fraud, the relationship of the witnesses must be questioned, which involves a great amount of effort. In this paper we use audio and motion data from a digital pen to identify users via handwritten symbols. We evaluated the performance our approach for 19 symbols in a study with 30 participants. We found that x-marks offer fewer individual features than other symbols like arrows or circles. By training on three samples and averaging three predictions we reach a mean F1-score of F1 = 0.87, using statistical and spectral features fed into SVMs.\",\"PeriodicalId\":318322,\"journal\":{\"name\":\"Proceedings of Mensch und Computer 2022\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of Mensch und Computer 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3543758.3543764\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Mensch und Computer 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3543758.3543764","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sign H3re: Symbol and X-Mark Writer Identification Using Audio and Motion Data from a Digital Pen
Although in many cases contracts can be made or ended digitally, laws require handwritten signatures in certain cases. Forgeries are a major challenge with digital contracts, as their validity is not always immediately apparent without forensic methods. Illiteracy or disabilities may result in a person being unable to write their full name. In this case x-mark signatures are used, which require a witness for validity. In cases of suspected fraud, the relationship of the witnesses must be questioned, which involves a great amount of effort. In this paper we use audio and motion data from a digital pen to identify users via handwritten symbols. We evaluated the performance our approach for 19 symbols in a study with 30 participants. We found that x-marks offer fewer individual features than other symbols like arrows or circles. By training on three samples and averaging three predictions we reach a mean F1-score of F1 = 0.87, using statistical and spectral features fed into SVMs.