{"title":"基于机器学习的乳腺癌检测优化预测方法","authors":"Nirdosh Kumar, Gaurav Sharma, Lava Bhargava","doi":"10.1109/ICECA49313.2020.9297479","DOIUrl":null,"url":null,"abstract":"Breast Cancer is the most prevalent form of cancer and significant reason for high mortality rates among women. Manual diagnosis of this disease requires long hours & specialists. Therefore an Automated breast cancer diagnosis has been developed to reduce the time taken for diagnosis and decreases the spread of cancer. This paper presents a comparative study of four machine learning algorithms namely Logistic Regression, SVM, KNN and Naive Bayes by calculating their classification accuracy, sensitivity, specificity and other parameters. The different hyper-parameters used for different ML algorithms were manually assigned. Among all algorithms, SVM performed better with the accuracy of about 98.24%.","PeriodicalId":297285,"journal":{"name":"2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"The Machine Learning based Optimized Prediction Method for Breast Cancer Detection\",\"authors\":\"Nirdosh Kumar, Gaurav Sharma, Lava Bhargava\",\"doi\":\"10.1109/ICECA49313.2020.9297479\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Breast Cancer is the most prevalent form of cancer and significant reason for high mortality rates among women. Manual diagnosis of this disease requires long hours & specialists. Therefore an Automated breast cancer diagnosis has been developed to reduce the time taken for diagnosis and decreases the spread of cancer. This paper presents a comparative study of four machine learning algorithms namely Logistic Regression, SVM, KNN and Naive Bayes by calculating their classification accuracy, sensitivity, specificity and other parameters. The different hyper-parameters used for different ML algorithms were manually assigned. Among all algorithms, SVM performed better with the accuracy of about 98.24%.\",\"PeriodicalId\":297285,\"journal\":{\"name\":\"2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICECA49313.2020.9297479\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 4th International Conference on Electronics, Communication and Aerospace Technology (ICECA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICECA49313.2020.9297479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Machine Learning based Optimized Prediction Method for Breast Cancer Detection
Breast Cancer is the most prevalent form of cancer and significant reason for high mortality rates among women. Manual diagnosis of this disease requires long hours & specialists. Therefore an Automated breast cancer diagnosis has been developed to reduce the time taken for diagnosis and decreases the spread of cancer. This paper presents a comparative study of four machine learning algorithms namely Logistic Regression, SVM, KNN and Naive Bayes by calculating their classification accuracy, sensitivity, specificity and other parameters. The different hyper-parameters used for different ML algorithms were manually assigned. Among all algorithms, SVM performed better with the accuracy of about 98.24%.