A. Redondi, L. Baroffio, A. Canclini, M. Cesana, M. Tagliasacchi
{"title":"一种用于物体识别的视觉传感器网络:试验台实现","authors":"A. Redondi, L. Baroffio, A. Canclini, M. Cesana, M. Tagliasacchi","doi":"10.1109/ICDSP.2013.6622789","DOIUrl":null,"url":null,"abstract":"This work describes the implementation of an object recognition service on top of energy and resource-constrained hardware. A complete pipeline for object recognition based on the BRISK visual features is implemented on Intel Imote2 sensor devices. The reference implementation is used to assess the performance of the object recognition pipeline in terms of processing time and recognition accuracy.","PeriodicalId":180360,"journal":{"name":"2013 18th International Conference on Digital Signal Processing (DSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"A visual sensor network for object recognition: Testbed realization\",\"authors\":\"A. Redondi, L. Baroffio, A. Canclini, M. Cesana, M. Tagliasacchi\",\"doi\":\"10.1109/ICDSP.2013.6622789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work describes the implementation of an object recognition service on top of energy and resource-constrained hardware. A complete pipeline for object recognition based on the BRISK visual features is implemented on Intel Imote2 sensor devices. The reference implementation is used to assess the performance of the object recognition pipeline in terms of processing time and recognition accuracy.\",\"PeriodicalId\":180360,\"journal\":{\"name\":\"2013 18th International Conference on Digital Signal Processing (DSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 18th International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2013.6622789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 18th International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2013.6622789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A visual sensor network for object recognition: Testbed realization
This work describes the implementation of an object recognition service on top of energy and resource-constrained hardware. A complete pipeline for object recognition based on the BRISK visual features is implemented on Intel Imote2 sensor devices. The reference implementation is used to assess the performance of the object recognition pipeline in terms of processing time and recognition accuracy.