基于遗传算法的V2X通信资源分配

Ibtissem Brahmi, H. Koubaa, F. Zarai
{"title":"基于遗传算法的V2X通信资源分配","authors":"Ibtissem Brahmi, H. Koubaa, F. Zarai","doi":"10.1109/ComNet47917.2020.9306076","DOIUrl":null,"url":null,"abstract":"Vehicle-to-Everything (V2X) networks were introduced by the Third Generation Partnership Project (3GPP) in Long Term Evolution (LTE) Release 14 and Release 15 in order to improve traffic safety and increase the transport systems efficiency. For V2X communications, an efficient radio Resource Bloc (RB) allocation and power control schemes are demanded to accommodate the increasing number of vehicular devices and their growing demand for data traffic. To this end, we propose a Genetic Algorithm (GA) based resource allocation scheme for V2X networks, which aims to maximize the total throughput of the system while guaranteeing Quality of Service (QoS) for both Cellular User Equipments (CUEs) and Vehicle User Equipments (VUEs). Preliminary, numerical results are done by MA TLAB software in order to verify the effectiveness of our proposed scheme. These results based on a comparison to the Optimal Capacity Resource Allocation (OCRA) represent the effectiveness of our proposed GA resource allocation scheme for V2X communications, since it gives us a result close to the OCRA algorithm.","PeriodicalId":351664,"journal":{"name":"2020 IEEE Eighth International Conference on Communications and Networking (ComNet)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Genetic Algorithm based Resource Allocation for V2X Communications\",\"authors\":\"Ibtissem Brahmi, H. Koubaa, F. Zarai\",\"doi\":\"10.1109/ComNet47917.2020.9306076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicle-to-Everything (V2X) networks were introduced by the Third Generation Partnership Project (3GPP) in Long Term Evolution (LTE) Release 14 and Release 15 in order to improve traffic safety and increase the transport systems efficiency. For V2X communications, an efficient radio Resource Bloc (RB) allocation and power control schemes are demanded to accommodate the increasing number of vehicular devices and their growing demand for data traffic. To this end, we propose a Genetic Algorithm (GA) based resource allocation scheme for V2X networks, which aims to maximize the total throughput of the system while guaranteeing Quality of Service (QoS) for both Cellular User Equipments (CUEs) and Vehicle User Equipments (VUEs). Preliminary, numerical results are done by MA TLAB software in order to verify the effectiveness of our proposed scheme. These results based on a comparison to the Optimal Capacity Resource Allocation (OCRA) represent the effectiveness of our proposed GA resource allocation scheme for V2X communications, since it gives us a result close to the OCRA algorithm.\",\"PeriodicalId\":351664,\"journal\":{\"name\":\"2020 IEEE Eighth International Conference on Communications and Networking (ComNet)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Eighth International Conference on Communications and Networking (ComNet)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ComNet47917.2020.9306076\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Eighth International Conference on Communications and Networking (ComNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ComNet47917.2020.9306076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

车辆到一切(V2X)网络由第三代合作伙伴计划(3GPP)在长期演进(LTE)第14版和第15版中引入,旨在改善交通安全并提高运输系统效率。对于V2X通信,需要有效的无线电资源分组(RB)分配和功率控制方案,以适应越来越多的车载设备及其日益增长的数据流量需求。为此,我们提出了一种基于遗传算法(GA)的V2X网络资源分配方案,该方案旨在最大限度地提高系统的总吞吐量,同时保证蜂窝用户设备(cue)和车辆用户设备(vue)的服务质量(QoS)。通过MA TLAB软件进行了初步的数值计算,验证了所提方案的有效性。这些结果基于与最优容量资源分配(OCRA)的比较,表明我们提出的V2X通信遗传资源分配方案的有效性,因为它给出了接近OCRA算法的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic Algorithm based Resource Allocation for V2X Communications
Vehicle-to-Everything (V2X) networks were introduced by the Third Generation Partnership Project (3GPP) in Long Term Evolution (LTE) Release 14 and Release 15 in order to improve traffic safety and increase the transport systems efficiency. For V2X communications, an efficient radio Resource Bloc (RB) allocation and power control schemes are demanded to accommodate the increasing number of vehicular devices and their growing demand for data traffic. To this end, we propose a Genetic Algorithm (GA) based resource allocation scheme for V2X networks, which aims to maximize the total throughput of the system while guaranteeing Quality of Service (QoS) for both Cellular User Equipments (CUEs) and Vehicle User Equipments (VUEs). Preliminary, numerical results are done by MA TLAB software in order to verify the effectiveness of our proposed scheme. These results based on a comparison to the Optimal Capacity Resource Allocation (OCRA) represent the effectiveness of our proposed GA resource allocation scheme for V2X communications, since it gives us a result close to the OCRA algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信