Hager Saleh, A. M. Hussien, M. Hassan, Abdelmgeid A. Ali
{"title":"基于递归神经网络和优化技术的脑卒中疾病预测","authors":"Hager Saleh, A. M. Hussien, M. Hassan, Abdelmgeid A. Ali","doi":"10.1109/ICEMIS56295.2022.9914334","DOIUrl":null,"url":null,"abstract":"Stroke disease is one of the most prevalent diseases all over the world. This paper presents a powerful early stroke prediction system that uses medical records that describe whether a person is infected or not. We proposed an optimized DeepRNN based on different layers of A Recurrent Neural Network (RNN) and KerasTuner optimization technique for predication stroke disease. The proposed model is compared with other ML models: Decision Tree (DT), Logistic Regression (LR), Random Forest (RF), Support Vector Machine (SVM), K Nearest Neighbors (K-NN), and Naive Bayes (NB). The GridsearchCV technique optimized ML models. The results showed that DeepRNN was the highest performance model compared with ML models.","PeriodicalId":191284,"journal":{"name":"2022 International Conference on Engineering & MIS (ICEMIS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Stroke Disease Based on Recurrent Neural Network and Optimization techniques\",\"authors\":\"Hager Saleh, A. M. Hussien, M. Hassan, Abdelmgeid A. Ali\",\"doi\":\"10.1109/ICEMIS56295.2022.9914334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stroke disease is one of the most prevalent diseases all over the world. This paper presents a powerful early stroke prediction system that uses medical records that describe whether a person is infected or not. We proposed an optimized DeepRNN based on different layers of A Recurrent Neural Network (RNN) and KerasTuner optimization technique for predication stroke disease. The proposed model is compared with other ML models: Decision Tree (DT), Logistic Regression (LR), Random Forest (RF), Support Vector Machine (SVM), K Nearest Neighbors (K-NN), and Naive Bayes (NB). The GridsearchCV technique optimized ML models. The results showed that DeepRNN was the highest performance model compared with ML models.\",\"PeriodicalId\":191284,\"journal\":{\"name\":\"2022 International Conference on Engineering & MIS (ICEMIS)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Engineering & MIS (ICEMIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEMIS56295.2022.9914334\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Engineering & MIS (ICEMIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMIS56295.2022.9914334","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting Stroke Disease Based on Recurrent Neural Network and Optimization techniques
Stroke disease is one of the most prevalent diseases all over the world. This paper presents a powerful early stroke prediction system that uses medical records that describe whether a person is infected or not. We proposed an optimized DeepRNN based on different layers of A Recurrent Neural Network (RNN) and KerasTuner optimization technique for predication stroke disease. The proposed model is compared with other ML models: Decision Tree (DT), Logistic Regression (LR), Random Forest (RF), Support Vector Machine (SVM), K Nearest Neighbors (K-NN), and Naive Bayes (NB). The GridsearchCV technique optimized ML models. The results showed that DeepRNN was the highest performance model compared with ML models.