多孔固体氧化物燃料电池制备的实验研究

Cole Wilhelm, Evan Schaffer, T. Welles, J. Ahn
{"title":"多孔固体氧化物燃料电池制备的实验研究","authors":"Cole Wilhelm, Evan Schaffer, T. Welles, J. Ahn","doi":"10.1115/imece2021-69235","DOIUrl":null,"url":null,"abstract":"\n Solid oxide fuel cells (SOFCs) are typically operated in a dual-chamber setup, where the fuel and oxidant flows are separated by the fuel cell. However, dual-chamber SOFCs (DCSOFCs) require sealant to keep the flows separate, meaning that rapid heating and cooling cycling could break the seal. The initial answer to this problem was a single-chamber SOFC (SC-SOFC). The SC-SOFC is simply a planar fuel cell mounted parallel to a mixed fuel and oxidant flow. This system operates through the catalytic reactions of the anode and cathode with the fuel and oxidant, respectively. The drawback of this design comes from the requirement of fuel rich flow. A fuel lean flow leads to the oxidation of the anode and failure of the cell. On the other end, a fuel rich flow will greatly decrease system efficiency as much fuel will pass the cell and be wasted, making SC-SOFCs a difficult technology to implement. This issue led to the development of a porous SOFC (PSOFC), as a variant on the SC-SOFC. The PSOFC incorporates a similar mixed flow but is mounted perpendicular to the flow with cathode upstream of anode, and a catalyst downstream of the anode with the goal of reforming exhaust into syngas for a zero-emission fuel cell. Pores through the entire cell allow the flow to reach the anode, from the cathode side of the cell. The zero-emission condition is realized with the use of hydrocarbon fuels in the mixed flow. Reactions of fuel and air in the cell result in products of CO2 and H2O, which are then reformed by the catalyst into syngas (H2 and CO). Exhaust reformation by the catalyst is possible due to the high operating temperature of SOFCs. Syngas from the cell may be used immediately for further electricity generation or stored for later use. Manufacturing of a PSOFC is carried out with additive manufacturing (3D printing). Techniques of manufacturing PSOFCs will be discussed. The catalyst layer has been omitted from cell production until electricity generation performance of the cell improves. PSOFCs tested thus far have produced under 100 mW/cm2 with an open circuit voltage (OCV) of 0.60 V. This performance is not enough to begin implementing PSOFCs in industry. However, it does set a solid base for future PSOFCs and shows that they are a viable source of power generation. With further improvement of manufacturing methods and implementation of a catalyst, PSOFCs will become an important tool in zero-emission power production.","PeriodicalId":238134,"journal":{"name":"Volume 8B: Energy","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Investigation of the Manufacturing of Porous Solid Oxide Fuel Cells\",\"authors\":\"Cole Wilhelm, Evan Schaffer, T. Welles, J. Ahn\",\"doi\":\"10.1115/imece2021-69235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Solid oxide fuel cells (SOFCs) are typically operated in a dual-chamber setup, where the fuel and oxidant flows are separated by the fuel cell. However, dual-chamber SOFCs (DCSOFCs) require sealant to keep the flows separate, meaning that rapid heating and cooling cycling could break the seal. The initial answer to this problem was a single-chamber SOFC (SC-SOFC). The SC-SOFC is simply a planar fuel cell mounted parallel to a mixed fuel and oxidant flow. This system operates through the catalytic reactions of the anode and cathode with the fuel and oxidant, respectively. The drawback of this design comes from the requirement of fuel rich flow. A fuel lean flow leads to the oxidation of the anode and failure of the cell. On the other end, a fuel rich flow will greatly decrease system efficiency as much fuel will pass the cell and be wasted, making SC-SOFCs a difficult technology to implement. This issue led to the development of a porous SOFC (PSOFC), as a variant on the SC-SOFC. The PSOFC incorporates a similar mixed flow but is mounted perpendicular to the flow with cathode upstream of anode, and a catalyst downstream of the anode with the goal of reforming exhaust into syngas for a zero-emission fuel cell. Pores through the entire cell allow the flow to reach the anode, from the cathode side of the cell. The zero-emission condition is realized with the use of hydrocarbon fuels in the mixed flow. Reactions of fuel and air in the cell result in products of CO2 and H2O, which are then reformed by the catalyst into syngas (H2 and CO). Exhaust reformation by the catalyst is possible due to the high operating temperature of SOFCs. Syngas from the cell may be used immediately for further electricity generation or stored for later use. Manufacturing of a PSOFC is carried out with additive manufacturing (3D printing). Techniques of manufacturing PSOFCs will be discussed. The catalyst layer has been omitted from cell production until electricity generation performance of the cell improves. PSOFCs tested thus far have produced under 100 mW/cm2 with an open circuit voltage (OCV) of 0.60 V. This performance is not enough to begin implementing PSOFCs in industry. However, it does set a solid base for future PSOFCs and shows that they are a viable source of power generation. With further improvement of manufacturing methods and implementation of a catalyst, PSOFCs will become an important tool in zero-emission power production.\",\"PeriodicalId\":238134,\"journal\":{\"name\":\"Volume 8B: Energy\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 8B: Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2021-69235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 8B: Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-69235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

固体氧化物燃料电池(sofc)通常在双室设置中运行,燃料和氧化剂流动由燃料电池分开。然而,双室SOFCs (DCSOFCs)需要密封胶来保持流体分离,这意味着快速的加热和冷却循环可能会破坏密封。这个问题的最初答案是单室SOFC (SC-SOFC)。SC-SOFC只是一个平面燃料电池安装平行于混合燃料和氧化剂流。该系统通过阳极和阴极分别与燃料和氧化剂的催化反应来运行。这种设计的缺点在于对富燃料流的要求。燃料稀薄流导致阳极氧化和电池失效。另一方面,富燃料流将大大降低系统效率,因为大量燃料将通过电池并被浪费,使sc - sofc成为一项难以实施的技术。这个问题导致了多孔SOFC (PSOFC)的发展,作为SC-SOFC的变体。PSOFC采用了类似的混合流,但垂直安装,阴极在阳极的上游,催化剂在阳极的下游,目的是将废气转化为合成气,用于零排放燃料电池。通过整个电池的孔允许流动到达阳极,从电池的阴极一侧。混合流采用烃类燃料,实现了零排放。燃料和空气在电池中的反应产生二氧化碳和水的产物,然后由催化剂转化为合成气(H2和CO)。由于sofc的工作温度较高,催化剂的废气改造是可能的。来自电池的合成气可以立即用于进一步发电或储存以供以后使用。PSOFC的制造是通过增材制造(3D打印)进行的。将讨论psofc的制造技术。在电池的发电性能改善之前,催化剂层已从电池生产中省略。迄今为止测试的PSOFCs在开路电压(OCV)为0.60 V的情况下产生的功率低于100 mW/cm2。这种性能不足以开始在工业中实施psofc。然而,它确实为未来的psofc奠定了坚实的基础,并表明它们是一种可行的发电来源。随着制造方法的进一步改进和催化剂的应用,PSOFCs将成为零排放电力生产的重要工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Investigation of the Manufacturing of Porous Solid Oxide Fuel Cells
Solid oxide fuel cells (SOFCs) are typically operated in a dual-chamber setup, where the fuel and oxidant flows are separated by the fuel cell. However, dual-chamber SOFCs (DCSOFCs) require sealant to keep the flows separate, meaning that rapid heating and cooling cycling could break the seal. The initial answer to this problem was a single-chamber SOFC (SC-SOFC). The SC-SOFC is simply a planar fuel cell mounted parallel to a mixed fuel and oxidant flow. This system operates through the catalytic reactions of the anode and cathode with the fuel and oxidant, respectively. The drawback of this design comes from the requirement of fuel rich flow. A fuel lean flow leads to the oxidation of the anode and failure of the cell. On the other end, a fuel rich flow will greatly decrease system efficiency as much fuel will pass the cell and be wasted, making SC-SOFCs a difficult technology to implement. This issue led to the development of a porous SOFC (PSOFC), as a variant on the SC-SOFC. The PSOFC incorporates a similar mixed flow but is mounted perpendicular to the flow with cathode upstream of anode, and a catalyst downstream of the anode with the goal of reforming exhaust into syngas for a zero-emission fuel cell. Pores through the entire cell allow the flow to reach the anode, from the cathode side of the cell. The zero-emission condition is realized with the use of hydrocarbon fuels in the mixed flow. Reactions of fuel and air in the cell result in products of CO2 and H2O, which are then reformed by the catalyst into syngas (H2 and CO). Exhaust reformation by the catalyst is possible due to the high operating temperature of SOFCs. Syngas from the cell may be used immediately for further electricity generation or stored for later use. Manufacturing of a PSOFC is carried out with additive manufacturing (3D printing). Techniques of manufacturing PSOFCs will be discussed. The catalyst layer has been omitted from cell production until electricity generation performance of the cell improves. PSOFCs tested thus far have produced under 100 mW/cm2 with an open circuit voltage (OCV) of 0.60 V. This performance is not enough to begin implementing PSOFCs in industry. However, it does set a solid base for future PSOFCs and shows that they are a viable source of power generation. With further improvement of manufacturing methods and implementation of a catalyst, PSOFCs will become an important tool in zero-emission power production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信