使用比例混合模型的洛伦兹时间序列分析

S. J. Abdulkadir, S. Yong
{"title":"使用比例混合模型的洛伦兹时间序列分析","authors":"S. J. Abdulkadir, S. Yong","doi":"10.1109/ISMSC.2015.7594082","DOIUrl":null,"url":null,"abstract":"Lorenz time-series is characterized by non-linearity, noise, volatility and is chaotic in nature thus making the process of forecasting cumbersome. The main aim of forecasters is to apply an approach that focuses on improving accuracy in both one-step and multi-step-ahead forecasts. This paper presents an empirical analysis of Lorenz time-series using Scaled UKF-NARX hybrid model to perform one-step and multi-step-ahead forecasts. The proposed hybrid model is trained using Bayesian regulation algorithm. The experimental results based on two forecatingg erorr metrics, normalized mean squared error (NMSE) and root mean square error (RMSE) shows that proposed hybrid model provides better multi-step-ahead forecasts whilst addressing the issue of long term dependencies.","PeriodicalId":407600,"journal":{"name":"2015 International Symposium on Mathematical Sciences and Computing Research (iSMSC)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Lorenz time-series analysis using a scaled hybrid model\",\"authors\":\"S. J. Abdulkadir, S. Yong\",\"doi\":\"10.1109/ISMSC.2015.7594082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lorenz time-series is characterized by non-linearity, noise, volatility and is chaotic in nature thus making the process of forecasting cumbersome. The main aim of forecasters is to apply an approach that focuses on improving accuracy in both one-step and multi-step-ahead forecasts. This paper presents an empirical analysis of Lorenz time-series using Scaled UKF-NARX hybrid model to perform one-step and multi-step-ahead forecasts. The proposed hybrid model is trained using Bayesian regulation algorithm. The experimental results based on two forecatingg erorr metrics, normalized mean squared error (NMSE) and root mean square error (RMSE) shows that proposed hybrid model provides better multi-step-ahead forecasts whilst addressing the issue of long term dependencies.\",\"PeriodicalId\":407600,\"journal\":{\"name\":\"2015 International Symposium on Mathematical Sciences and Computing Research (iSMSC)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Symposium on Mathematical Sciences and Computing Research (iSMSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISMSC.2015.7594082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Symposium on Mathematical Sciences and Computing Research (iSMSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMSC.2015.7594082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

洛伦兹时间序列具有非线性、噪声、波动性和混沌等特点,使得预测过程十分繁琐。预报员的主要目的是应用一种方法,着重于提高一步和多步预测的准确性。本文利用UKF-NARX混合模型对Lorenz时间序列进行了一步预测和多步预测。采用贝叶斯调节算法对混合模型进行训练。基于归一化均方误差(NMSE)和均方根误差(RMSE)两种预测误差指标的实验结果表明,混合模型在解决长期依赖问题的同时提供了更好的多步超前预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lorenz time-series analysis using a scaled hybrid model
Lorenz time-series is characterized by non-linearity, noise, volatility and is chaotic in nature thus making the process of forecasting cumbersome. The main aim of forecasters is to apply an approach that focuses on improving accuracy in both one-step and multi-step-ahead forecasts. This paper presents an empirical analysis of Lorenz time-series using Scaled UKF-NARX hybrid model to perform one-step and multi-step-ahead forecasts. The proposed hybrid model is trained using Bayesian regulation algorithm. The experimental results based on two forecatingg erorr metrics, normalized mean squared error (NMSE) and root mean square error (RMSE) shows that proposed hybrid model provides better multi-step-ahead forecasts whilst addressing the issue of long term dependencies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信