C. Yoshimura, Masato Hayashi, Takashi Takemoto, M. Yamaoka
{"title":"CMOS退火炉:组合优化问题的特定领域架构","authors":"C. Yoshimura, Masato Hayashi, Takashi Takemoto, M. Yamaoka","doi":"10.1109/ASP-DAC47756.2020.9045326","DOIUrl":null,"url":null,"abstract":"Domain-specific architectures are being studied to improve computer performance beyond the end of Moore’s Law. Here, we propose a new computing architecture, the CMOS annealing machine, which provides a fast means of solving combinatorial optimization problems. Our architecture is based on in-memory computing architecture through utilizing the locality of interactions in the Ising model. The prototype presented in 2019 has two processors on a business-card-sized board and solves problems 55 times faster than conventional computers.","PeriodicalId":125112,"journal":{"name":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"CMOS Annealing Machine: A Domain-Specific Architecture for Combinatorial Optimization Problem\",\"authors\":\"C. Yoshimura, Masato Hayashi, Takashi Takemoto, M. Yamaoka\",\"doi\":\"10.1109/ASP-DAC47756.2020.9045326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Domain-specific architectures are being studied to improve computer performance beyond the end of Moore’s Law. Here, we propose a new computing architecture, the CMOS annealing machine, which provides a fast means of solving combinatorial optimization problems. Our architecture is based on in-memory computing architecture through utilizing the locality of interactions in the Ising model. The prototype presented in 2019 has two processors on a business-card-sized board and solves problems 55 times faster than conventional computers.\",\"PeriodicalId\":125112,\"journal\":{\"name\":\"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASP-DAC47756.2020.9045326\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC47756.2020.9045326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
CMOS Annealing Machine: A Domain-Specific Architecture for Combinatorial Optimization Problem
Domain-specific architectures are being studied to improve computer performance beyond the end of Moore’s Law. Here, we propose a new computing architecture, the CMOS annealing machine, which provides a fast means of solving combinatorial optimization problems. Our architecture is based on in-memory computing architecture through utilizing the locality of interactions in the Ising model. The prototype presented in 2019 has two processors on a business-card-sized board and solves problems 55 times faster than conventional computers.