使用硬件侧通道的沙盒检测

Yehonatan Lusky, A. Mendelson
{"title":"使用硬件侧通道的沙盒检测","authors":"Yehonatan Lusky, A. Mendelson","doi":"10.1109/ISQED51717.2021.9424260","DOIUrl":null,"url":null,"abstract":"A common way to detect malware attacks and avoid their destructive impact on a system is the use of virtual machines; A.K.A sandboxing. Attackers, on the other hand, strive to detect sandboxes when their software is running under such a virtual environment. Accordingly, they postpone launching any attack (Malware) as long as operating under such an execution environment. Thus, it is common among malware developers to utilize different sandbox detection techniques (sometimes referred to as Anti-VM or Anti-Virtualization techniques). In this paper, we present novel, side-channel-based techniques to detect sandboxes. We show that it is possible to detect even sandboxes that were properly configured and so far considered to be detection-proof. This paper proposes and implements the first attack which leverage side channels leakage between sibling logical cores to determine the execution environment.","PeriodicalId":123018,"journal":{"name":"2021 22nd International Symposium on Quality Electronic Design (ISQED)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Sandbox Detection Using Hardware Side Channels\",\"authors\":\"Yehonatan Lusky, A. Mendelson\",\"doi\":\"10.1109/ISQED51717.2021.9424260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A common way to detect malware attacks and avoid their destructive impact on a system is the use of virtual machines; A.K.A sandboxing. Attackers, on the other hand, strive to detect sandboxes when their software is running under such a virtual environment. Accordingly, they postpone launching any attack (Malware) as long as operating under such an execution environment. Thus, it is common among malware developers to utilize different sandbox detection techniques (sometimes referred to as Anti-VM or Anti-Virtualization techniques). In this paper, we present novel, side-channel-based techniques to detect sandboxes. We show that it is possible to detect even sandboxes that were properly configured and so far considered to be detection-proof. This paper proposes and implements the first attack which leverage side channels leakage between sibling logical cores to determine the execution environment.\",\"PeriodicalId\":123018,\"journal\":{\"name\":\"2021 22nd International Symposium on Quality Electronic Design (ISQED)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 22nd International Symposium on Quality Electronic Design (ISQED)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISQED51717.2021.9424260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 22nd International Symposium on Quality Electronic Design (ISQED)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISQED51717.2021.9424260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

检测恶意软件攻击并避免其对系统的破坏性影响的常用方法是使用虚拟机;又称为沙盒。另一方面,当攻击者的软件在这种虚拟环境下运行时,他们会努力检测沙箱。因此,只要在这样的执行环境下运行,他们就会推迟发起任何攻击(恶意软件)。因此,恶意软件开发人员通常使用不同的沙箱检测技术(有时称为反虚拟机或反虚拟化技术)。在本文中,我们提出了一种新的,基于侧通道的技术来检测沙盒。我们表明,即使是正确配置的沙箱也可以检测到,并且到目前为止被认为是防检测的。本文提出并实现了利用兄弟逻辑核之间的侧信道泄漏来确定执行环境的第一种攻击方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sandbox Detection Using Hardware Side Channels
A common way to detect malware attacks and avoid their destructive impact on a system is the use of virtual machines; A.K.A sandboxing. Attackers, on the other hand, strive to detect sandboxes when their software is running under such a virtual environment. Accordingly, they postpone launching any attack (Malware) as long as operating under such an execution environment. Thus, it is common among malware developers to utilize different sandbox detection techniques (sometimes referred to as Anti-VM or Anti-Virtualization techniques). In this paper, we present novel, side-channel-based techniques to detect sandboxes. We show that it is possible to detect even sandboxes that were properly configured and so far considered to be detection-proof. This paper proposes and implements the first attack which leverage side channels leakage between sibling logical cores to determine the execution environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信