Marcelo Tibau, S. Siqueira, B. Nunes, Terhi Nurmikko-Fuller, R. Manrique
{"title":"使用查询重构比较网络搜索引擎中的学习行为","authors":"Marcelo Tibau, S. Siqueira, B. Nunes, Terhi Nurmikko-Fuller, R. Manrique","doi":"10.1109/ICALT.2019.00054","DOIUrl":null,"url":null,"abstract":"Web search engines have gained importance as tools capable of connecting informal and self-learning with formal learning by aiding individuals in retrieving relevant information through the formulation and modification of their queries. Understand the differences between query states and their transitions becomes increasingly important, as doing so makes the optimization of search engines' results according to educational uses and needs possible. This paper introduces the ESKiP Taxonomy of Query States, a classification framework validated in an experiment involving two different query log datasets. It enables the comparison between the behaviors of users in search for knowledge (learners) and users performing transactional or factual searches in Web search engines.","PeriodicalId":356549,"journal":{"name":"2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT)","volume":"2161-377X 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Using Query Reformulation to Compare Learning Behaviors in Web Search Engines\",\"authors\":\"Marcelo Tibau, S. Siqueira, B. Nunes, Terhi Nurmikko-Fuller, R. Manrique\",\"doi\":\"10.1109/ICALT.2019.00054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Web search engines have gained importance as tools capable of connecting informal and self-learning with formal learning by aiding individuals in retrieving relevant information through the formulation and modification of their queries. Understand the differences between query states and their transitions becomes increasingly important, as doing so makes the optimization of search engines' results according to educational uses and needs possible. This paper introduces the ESKiP Taxonomy of Query States, a classification framework validated in an experiment involving two different query log datasets. It enables the comparison between the behaviors of users in search for knowledge (learners) and users performing transactional or factual searches in Web search engines.\",\"PeriodicalId\":356549,\"journal\":{\"name\":\"2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT)\",\"volume\":\"2161-377X 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICALT.2019.00054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICALT.2019.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Using Query Reformulation to Compare Learning Behaviors in Web Search Engines
Web search engines have gained importance as tools capable of connecting informal and self-learning with formal learning by aiding individuals in retrieving relevant information through the formulation and modification of their queries. Understand the differences between query states and their transitions becomes increasingly important, as doing so makes the optimization of search engines' results according to educational uses and needs possible. This paper introduces the ESKiP Taxonomy of Query States, a classification framework validated in an experiment involving two different query log datasets. It enables the comparison between the behaviors of users in search for knowledge (learners) and users performing transactional or factual searches in Web search engines.