变遗忘因子AR模型时变参数的自适应估计

G. Kvascev, Ž. Đurović, B. Kovacevic, I. Kovacevic
{"title":"变遗忘因子AR模型时变参数的自适应估计","authors":"G. Kvascev, Ž. Đurović, B. Kovacevic, I. Kovacevic","doi":"10.1109/MELCON.2014.6820509","DOIUrl":null,"url":null,"abstract":"A new method for estimating time-varying parameters of nonstationary AR signal models, based on adaptive recursive least squares with variable forgetting factors, is described. The adaptive estimator differs from the conventional one by the simultaneously estimation of AR model parameters and scale factor of prediction residuals, while the variable forgetting factor values are adapted to the nonstationary signal via a new extended prediction error detection scheme. The method has good adaptability in the non-stationary situations, and gives low bias and low variance at the stationary situations. The feasibility of the approach is demonstrated with simulations.","PeriodicalId":103316,"journal":{"name":"MELECON 2014 - 2014 17th IEEE Mediterranean Electrotechnical Conference","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Adaptive estimation of time-varying parameters in AR models with variable forgetting factor\",\"authors\":\"G. Kvascev, Ž. Đurović, B. Kovacevic, I. Kovacevic\",\"doi\":\"10.1109/MELCON.2014.6820509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new method for estimating time-varying parameters of nonstationary AR signal models, based on adaptive recursive least squares with variable forgetting factors, is described. The adaptive estimator differs from the conventional one by the simultaneously estimation of AR model parameters and scale factor of prediction residuals, while the variable forgetting factor values are adapted to the nonstationary signal via a new extended prediction error detection scheme. The method has good adaptability in the non-stationary situations, and gives low bias and low variance at the stationary situations. The feasibility of the approach is demonstrated with simulations.\",\"PeriodicalId\":103316,\"journal\":{\"name\":\"MELECON 2014 - 2014 17th IEEE Mediterranean Electrotechnical Conference\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MELECON 2014 - 2014 17th IEEE Mediterranean Electrotechnical Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MELCON.2014.6820509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MELECON 2014 - 2014 17th IEEE Mediterranean Electrotechnical Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MELCON.2014.6820509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于可变遗忘因子的自适应递归最小二乘估计非平稳AR信号时变参数的新方法。该自适应估计器与传统估计器的不同之处是同时估计AR模型参数和预测残差的尺度因子,而通过一种新的扩展的预测误差检测方案使变量遗忘因子值适应于非平稳信号。该方法在非平稳情况下具有良好的适应性,在平稳情况下具有低偏差和低方差。通过仿真验证了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive estimation of time-varying parameters in AR models with variable forgetting factor
A new method for estimating time-varying parameters of nonstationary AR signal models, based on adaptive recursive least squares with variable forgetting factors, is described. The adaptive estimator differs from the conventional one by the simultaneously estimation of AR model parameters and scale factor of prediction residuals, while the variable forgetting factor values are adapted to the nonstationary signal via a new extended prediction error detection scheme. The method has good adaptability in the non-stationary situations, and gives low bias and low variance at the stationary situations. The feasibility of the approach is demonstrated with simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信