虚拟人自然交互的多模态活动检测

Kai Wang, Shiguo Lian, Haiyan Sang, Wen Liu, Zhaoxiang Liu, Fuyuan Shi, Hui Deng, Zeming Sun, Zezhou Chen
{"title":"虚拟人自然交互的多模态活动检测","authors":"Kai Wang, Shiguo Lian, Haiyan Sang, Wen Liu, Zhaoxiang Liu, Fuyuan Shi, Hui Deng, Zeming Sun, Zezhou Chen","doi":"10.1109/VRW58643.2023.00178","DOIUrl":null,"url":null,"abstract":"Natural face-to-face human-robot conversation is one of the most important features for virtual human in virtual reality and metaverse. However, the unintended wake-up of robot is often activated with only Voice Activity Detection (VAD). To address this issue, we propose a Multimodal Activity Detection (MAD) scheme, which considers not only voice but also gaze, lip-movement and talking content to decide whether the person is activating the robot. A dataset for large screen-based virtual human conversation is collected from various challenging cases. The experimental results show that the proposed MAD greatly outperforms VAD-only method.","PeriodicalId":412598,"journal":{"name":"2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multimodal Activity Detection for Natural Interaction with Virtual Human\",\"authors\":\"Kai Wang, Shiguo Lian, Haiyan Sang, Wen Liu, Zhaoxiang Liu, Fuyuan Shi, Hui Deng, Zeming Sun, Zezhou Chen\",\"doi\":\"10.1109/VRW58643.2023.00178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Natural face-to-face human-robot conversation is one of the most important features for virtual human in virtual reality and metaverse. However, the unintended wake-up of robot is often activated with only Voice Activity Detection (VAD). To address this issue, we propose a Multimodal Activity Detection (MAD) scheme, which considers not only voice but also gaze, lip-movement and talking content to decide whether the person is activating the robot. A dataset for large screen-based virtual human conversation is collected from various challenging cases. The experimental results show that the proposed MAD greatly outperforms VAD-only method.\",\"PeriodicalId\":412598,\"journal\":{\"name\":\"2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VRW58643.2023.00178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VRW58643.2023.00178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自然的人机面对面对话是虚拟人在虚拟现实和虚拟世界中最重要的特征之一。然而,机器人的非预期唤醒通常仅由语音活动检测(VAD)激活。为了解决这个问题,我们提出了一种多模式活动检测(MAD)方案,该方案不仅考虑声音,还考虑凝视、嘴唇运动和谈话内容,以确定人是否在激活机器人。从各种具有挑战性的案例中收集了基于大屏幕的虚拟人类对话数据集。实验结果表明,该方法大大优于纯vad方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multimodal Activity Detection for Natural Interaction with Virtual Human
Natural face-to-face human-robot conversation is one of the most important features for virtual human in virtual reality and metaverse. However, the unintended wake-up of robot is often activated with only Voice Activity Detection (VAD). To address this issue, we propose a Multimodal Activity Detection (MAD) scheme, which considers not only voice but also gaze, lip-movement and talking content to decide whether the person is activating the robot. A dataset for large screen-based virtual human conversation is collected from various challenging cases. The experimental results show that the proposed MAD greatly outperforms VAD-only method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信