LMS自适应算法中系统失配协方差矩阵的性质

Laura-Maria Dogariu, S. Ciochină, C. Paleologu
{"title":"LMS自适应算法中系统失配协方差矩阵的性质","authors":"Laura-Maria Dogariu, S. Ciochină, C. Paleologu","doi":"10.1109/iccomm.2018.8484800","DOIUrl":null,"url":null,"abstract":"Ahstract-The system mismatch covariance matrix is of major interest in some of the optimization approaches of the least-mean-square type adaptive algorithms. Some examples are the ones based on the Kalman filtering theory, or the variable step-size algorithms based on the minimization of the mean square system mismatch. All of them require information about this specific matrix. The usual assumption is to approximate this matrix with a scaled unity one. This paper analyzes the validity conditions of this assumption. Simulation results support the theoretical findings.","PeriodicalId":158890,"journal":{"name":"2018 International Conference on Communications (COMM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Properties of the System Mismatch Covariance Matrix in the LMS Adaptive Algorithm\",\"authors\":\"Laura-Maria Dogariu, S. Ciochină, C. Paleologu\",\"doi\":\"10.1109/iccomm.2018.8484800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ahstract-The system mismatch covariance matrix is of major interest in some of the optimization approaches of the least-mean-square type adaptive algorithms. Some examples are the ones based on the Kalman filtering theory, or the variable step-size algorithms based on the minimization of the mean square system mismatch. All of them require information about this specific matrix. The usual assumption is to approximate this matrix with a scaled unity one. This paper analyzes the validity conditions of this assumption. Simulation results support the theoretical findings.\",\"PeriodicalId\":158890,\"journal\":{\"name\":\"2018 International Conference on Communications (COMM)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Communications (COMM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iccomm.2018.8484800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Communications (COMM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccomm.2018.8484800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

系统失配协方差矩阵是最小均方自适应算法中一些优化方法的主要关注点。一些例子是基于卡尔曼滤波理论,或基于均方系统失配最小化的变步长算法。它们都需要关于这个矩阵的信息。通常的假设是用缩放后的单位1来近似这个矩阵。本文分析了这一假设的有效性条件。仿真结果支持理论研究结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Properties of the System Mismatch Covariance Matrix in the LMS Adaptive Algorithm
Ahstract-The system mismatch covariance matrix is of major interest in some of the optimization approaches of the least-mean-square type adaptive algorithms. Some examples are the ones based on the Kalman filtering theory, or the variable step-size algorithms based on the minimization of the mean square system mismatch. All of them require information about this specific matrix. The usual assumption is to approximate this matrix with a scaled unity one. This paper analyzes the validity conditions of this assumption. Simulation results support the theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信