误差有界预测量子控制的时间解耦

G. Glaeser, Gregor Nitsche, E. Hennig
{"title":"误差有界预测量子控制的时间解耦","authors":"G. Glaeser, Gregor Nitsche, E. Hennig","doi":"10.1109/FDL.2015.7306358","DOIUrl":null,"url":null,"abstract":"Virtual prototyping of integrated mixed-signal smart-sensor systems requires high-performance co-simulation of analog frontend circuitry with complex digital controller hardware and embedded real-time software. We use SystemC/TLM 2.0 in combination with a cycle-count accurate temporal decoupling approach to simulate digital components and firmware code execution at high speed while preserving clock cycle accuracy and, thus, real-time behavior at time quantum boundaries. Optimal time quanta ensuring real-time capability can be calculated and set automatically during simulation if the simulation engine has access to exact timing information about upcoming communication events. These methods fail in case of non-deterministic, asynchronous events resulting in a possibly invalid simulation result. In this paper, we propose an extension of this method to the case of asynchronous events generated by blackbox sources from which a-priori event timing information is not available, such as coupled analog simulators or hardware in the loop. Additional event processing latency and/or rollback effort caused by temporal decoupling is minimized by calculating optimal time quanta dynamically in a SystemC model using a linear prediction scheme. For an example smart-sensor system model, we show that quasi-periodic events that trigger activities in temporally decoupled processes are handled accurately after the predictor has settled.","PeriodicalId":171448,"journal":{"name":"2015 Forum on Specification and Design Languages (FDL)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Temporal decoupling with error-bounded predictive quantum control\",\"authors\":\"G. Glaeser, Gregor Nitsche, E. Hennig\",\"doi\":\"10.1109/FDL.2015.7306358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Virtual prototyping of integrated mixed-signal smart-sensor systems requires high-performance co-simulation of analog frontend circuitry with complex digital controller hardware and embedded real-time software. We use SystemC/TLM 2.0 in combination with a cycle-count accurate temporal decoupling approach to simulate digital components and firmware code execution at high speed while preserving clock cycle accuracy and, thus, real-time behavior at time quantum boundaries. Optimal time quanta ensuring real-time capability can be calculated and set automatically during simulation if the simulation engine has access to exact timing information about upcoming communication events. These methods fail in case of non-deterministic, asynchronous events resulting in a possibly invalid simulation result. In this paper, we propose an extension of this method to the case of asynchronous events generated by blackbox sources from which a-priori event timing information is not available, such as coupled analog simulators or hardware in the loop. Additional event processing latency and/or rollback effort caused by temporal decoupling is minimized by calculating optimal time quanta dynamically in a SystemC model using a linear prediction scheme. For an example smart-sensor system model, we show that quasi-periodic events that trigger activities in temporally decoupled processes are handled accurately after the predictor has settled.\",\"PeriodicalId\":171448,\"journal\":{\"name\":\"2015 Forum on Specification and Design Languages (FDL)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 Forum on Specification and Design Languages (FDL)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FDL.2015.7306358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Forum on Specification and Design Languages (FDL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FDL.2015.7306358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

集成混合信号智能传感器系统的虚拟样机需要模拟前端电路与复杂的数字控制器硬件和嵌入式实时软件的高性能联合仿真。我们将SystemC/TLM 2.0与周期计数精确时间解耦方法相结合,以高速模拟数字组件和固件代码执行,同时保持时钟周期精度,从而在时间量子边界上实现实时行为。如果仿真引擎能够访问关于即将到来的通信事件的精确定时信息,则可以在仿真期间自动计算和设置确保实时能力的最佳时间量。这些方法在不确定的异步事件导致可能无效的模拟结果的情况下失败。在本文中,我们提出将该方法扩展到由黑盒源生成的异步事件的情况,其中先验事件时序信息不可用,例如耦合模拟模拟器或环路中的硬件。通过使用线性预测方案在SystemC模型中动态计算最优时间量子,可以最小化由时间解耦引起的额外事件处理延迟和/或回滚努力。对于一个示例智能传感器系统模型,我们展示了在预测器确定后,触发暂时解耦过程中的活动的准周期事件被准确地处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Temporal decoupling with error-bounded predictive quantum control
Virtual prototyping of integrated mixed-signal smart-sensor systems requires high-performance co-simulation of analog frontend circuitry with complex digital controller hardware and embedded real-time software. We use SystemC/TLM 2.0 in combination with a cycle-count accurate temporal decoupling approach to simulate digital components and firmware code execution at high speed while preserving clock cycle accuracy and, thus, real-time behavior at time quantum boundaries. Optimal time quanta ensuring real-time capability can be calculated and set automatically during simulation if the simulation engine has access to exact timing information about upcoming communication events. These methods fail in case of non-deterministic, asynchronous events resulting in a possibly invalid simulation result. In this paper, we propose an extension of this method to the case of asynchronous events generated by blackbox sources from which a-priori event timing information is not available, such as coupled analog simulators or hardware in the loop. Additional event processing latency and/or rollback effort caused by temporal decoupling is minimized by calculating optimal time quanta dynamically in a SystemC model using a linear prediction scheme. For an example smart-sensor system model, we show that quasi-periodic events that trigger activities in temporally decoupled processes are handled accurately after the predictor has settled.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信