S. Kosai, R. Inanami, M. Hamada, S. Magoshi, F. Hatori
{"title":"提高逻辑器件电子束直写的多单元射击技术的吞吐量","authors":"S. Kosai, R. Inanami, M. Hamada, S. Magoshi, F. Hatori","doi":"10.1109/ASMC.2006.1638755","DOIUrl":null,"url":null,"abstract":"This paper reports a new pattern design method improving the throughput of the character projection electron beam direct writing (CP-EBDW) lithography for cell-based logic devices. The shot count decreases to approximately one fifth in a 90 nm CMOS technology by assembling the standard cells (SCs) in the physical design stage and exposing them at a time with multiple-cell shot technique. The operating frequency degradation of the logic devices is less than 5 %","PeriodicalId":407645,"journal":{"name":"The 17th Annual SEMI/IEEE ASMC 2006 Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Throughput Enhancement in Electron Beam Direct Writing by Multiple-cell Shot Technique for Logic Devices\",\"authors\":\"S. Kosai, R. Inanami, M. Hamada, S. Magoshi, F. Hatori\",\"doi\":\"10.1109/ASMC.2006.1638755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports a new pattern design method improving the throughput of the character projection electron beam direct writing (CP-EBDW) lithography for cell-based logic devices. The shot count decreases to approximately one fifth in a 90 nm CMOS technology by assembling the standard cells (SCs) in the physical design stage and exposing them at a time with multiple-cell shot technique. The operating frequency degradation of the logic devices is less than 5 %\",\"PeriodicalId\":407645,\"journal\":{\"name\":\"The 17th Annual SEMI/IEEE ASMC 2006 Conference\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 17th Annual SEMI/IEEE ASMC 2006 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASMC.2006.1638755\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 17th Annual SEMI/IEEE ASMC 2006 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASMC.2006.1638755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Throughput Enhancement in Electron Beam Direct Writing by Multiple-cell Shot Technique for Logic Devices
This paper reports a new pattern design method improving the throughput of the character projection electron beam direct writing (CP-EBDW) lithography for cell-based logic devices. The shot count decreases to approximately one fifth in a 90 nm CMOS technology by assembling the standard cells (SCs) in the physical design stage and exposing them at a time with multiple-cell shot technique. The operating frequency degradation of the logic devices is less than 5 %