在元启发式算子选择中嵌入q -学习:增强型二元灰狼优化器案例

Diego Tapia, Broderick Crawford, Ricardo Soto, W. Palma, José Lemus-Romani, Felipe Cisternas-Caneo, Mauricio Castillo, Marcelo Becerra-Rozas, F. Paredes, S. Misra
{"title":"在元启发式算子选择中嵌入q -学习:增强型二元灰狼优化器案例","authors":"Diego Tapia, Broderick Crawford, Ricardo Soto, W. Palma, José Lemus-Romani, Felipe Cisternas-Caneo, Mauricio Castillo, Marcelo Becerra-Rozas, F. Paredes, S. Misra","doi":"10.1109/ICAACCA51523.2021.9465259","DOIUrl":null,"url":null,"abstract":"In the different situations present in the industry, combinatorial problems are increasingly frequent. This paper presents the interaction of Metaheuristics and Machine Learning, specifically as Machine Learning can be a support to enhance Metaheuristics. The resolution of the Set Covering Problem is presented, using the Grey Wolf Optimizer and Sine Cosine Algorithm metaheuristics that have been improved by adding a Q-Learning technique for the selection of a Discretization Scheme, using two-steps, intelligently choosing which transfer function to use and which binarization technique to apply in each iteration. The results show a better result for the Grey Wolf Optimizer with Q-Learning configuration, compared to other configurations in the literature, obtaining a better balance between exploration and exploitation.","PeriodicalId":328922,"journal":{"name":"2021 IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Embedding Q-Learning in the selection of metaheuristic operators: The enhanced binary grey wolf optimizer case\",\"authors\":\"Diego Tapia, Broderick Crawford, Ricardo Soto, W. Palma, José Lemus-Romani, Felipe Cisternas-Caneo, Mauricio Castillo, Marcelo Becerra-Rozas, F. Paredes, S. Misra\",\"doi\":\"10.1109/ICAACCA51523.2021.9465259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the different situations present in the industry, combinatorial problems are increasingly frequent. This paper presents the interaction of Metaheuristics and Machine Learning, specifically as Machine Learning can be a support to enhance Metaheuristics. The resolution of the Set Covering Problem is presented, using the Grey Wolf Optimizer and Sine Cosine Algorithm metaheuristics that have been improved by adding a Q-Learning technique for the selection of a Discretization Scheme, using two-steps, intelligently choosing which transfer function to use and which binarization technique to apply in each iteration. The results show a better result for the Grey Wolf Optimizer with Q-Learning configuration, compared to other configurations in the literature, obtaining a better balance between exploration and exploitation.\",\"PeriodicalId\":328922,\"journal\":{\"name\":\"2021 IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAACCA51523.2021.9465259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Automation/XXIV Congress of the Chilean Association of Automatic Control (ICA-ACCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAACCA51523.2021.9465259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在行业中存在的不同情况下,组合问题日益频繁。本文介绍了元启发式和机器学习的相互作用,特别是机器学习可以作为增强元启发式的支持。采用灰狼优化器和正弦余弦算法的元启发式方法,通过添加q -学习技术来选择离散化方案,采用两步,智能地选择在每次迭代中使用哪种传递函数和采用哪种二值化技术,提出了集覆盖问题的解决方案。结果表明,与文献中其他配置相比,Q-Learning配置的灰狼优化器效果更好,在探索和利用之间取得了更好的平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedding Q-Learning in the selection of metaheuristic operators: The enhanced binary grey wolf optimizer case
In the different situations present in the industry, combinatorial problems are increasingly frequent. This paper presents the interaction of Metaheuristics and Machine Learning, specifically as Machine Learning can be a support to enhance Metaheuristics. The resolution of the Set Covering Problem is presented, using the Grey Wolf Optimizer and Sine Cosine Algorithm metaheuristics that have been improved by adding a Q-Learning technique for the selection of a Discretization Scheme, using two-steps, intelligently choosing which transfer function to use and which binarization technique to apply in each iteration. The results show a better result for the Grey Wolf Optimizer with Q-Learning configuration, compared to other configurations in the literature, obtaining a better balance between exploration and exploitation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信