为下一次僵尸网络攻击做好准备:检测僵尸网络命令和控制中的算法生成域

Tim Kelley, Eoghan Furey
{"title":"为下一次僵尸网络攻击做好准备:检测僵尸网络命令和控制中的算法生成域","authors":"Tim Kelley, Eoghan Furey","doi":"10.1109/ISSC.2018.8585344","DOIUrl":null,"url":null,"abstract":"This paper highlights the high noise to signal ratio that DNS traffic poses to network defense’ incident detection and response, and the broader topic of the critical time component required from intrusion detection for actionable security intelligence. Nowhere is this truer than in the monitoring and interception of malware command and control communications hidden amongst benign DNS internet traffic. Global ransomware and malware families were responsible for over 5 billion USD in losses. In 4 days Reaper, a Mirai variant, infected 2.7m nodes. The scale of malware infections outstrips information security blacklisting ability to keep pace. Machine learning techniques, such as CLIP, provide the ability to detect malware traffic to malicious command and control domains with high reliability using lexical properties and semantic patterns in algorithmically generated domain names.","PeriodicalId":174854,"journal":{"name":"2018 29th Irish Signals and Systems Conference (ISSC)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Getting Prepared for the Next Botnet Attack : Detecting Algorithmically Generated Domains in Botnet Command and Control\",\"authors\":\"Tim Kelley, Eoghan Furey\",\"doi\":\"10.1109/ISSC.2018.8585344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper highlights the high noise to signal ratio that DNS traffic poses to network defense’ incident detection and response, and the broader topic of the critical time component required from intrusion detection for actionable security intelligence. Nowhere is this truer than in the monitoring and interception of malware command and control communications hidden amongst benign DNS internet traffic. Global ransomware and malware families were responsible for over 5 billion USD in losses. In 4 days Reaper, a Mirai variant, infected 2.7m nodes. The scale of malware infections outstrips information security blacklisting ability to keep pace. Machine learning techniques, such as CLIP, provide the ability to detect malware traffic to malicious command and control domains with high reliability using lexical properties and semantic patterns in algorithmically generated domain names.\",\"PeriodicalId\":174854,\"journal\":{\"name\":\"2018 29th Irish Signals and Systems Conference (ISSC)\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 29th Irish Signals and Systems Conference (ISSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSC.2018.8585344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 29th Irish Signals and Systems Conference (ISSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSC.2018.8585344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文强调了DNS流量对网络防御事件检测和响应的高噪信比,以及入侵检测所需的关键时间分量这一更广泛的主题,以实现可操作的安全情报。没有什么比监视和拦截隐藏在良性DNS互联网流量中的恶意软件命令和控制通信更真实的了。全球勒索软件和恶意软件家族造成的损失超过50亿美元。在4天内,Mirai变种Reaper感染了270万个节点。恶意软件感染的规模超过了信息安全黑名单的能力。机器学习技术,如CLIP,提供了使用算法生成的域名中的词汇属性和语义模式,以高可靠性检测恶意命令和控制域的恶意流量的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Getting Prepared for the Next Botnet Attack : Detecting Algorithmically Generated Domains in Botnet Command and Control
This paper highlights the high noise to signal ratio that DNS traffic poses to network defense’ incident detection and response, and the broader topic of the critical time component required from intrusion detection for actionable security intelligence. Nowhere is this truer than in the monitoring and interception of malware command and control communications hidden amongst benign DNS internet traffic. Global ransomware and malware families were responsible for over 5 billion USD in losses. In 4 days Reaper, a Mirai variant, infected 2.7m nodes. The scale of malware infections outstrips information security blacklisting ability to keep pace. Machine learning techniques, such as CLIP, provide the ability to detect malware traffic to malicious command and control domains with high reliability using lexical properties and semantic patterns in algorithmically generated domain names.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信