新型无跟踪光纤太阳能聚光器

L. Padrón, Luis Rosario, Jordyn Sibert, Jeffrey Gleasman, Daniel Guerra
{"title":"新型无跟踪光纤太阳能聚光器","authors":"L. Padrón, Luis Rosario, Jordyn Sibert, Jeffrey Gleasman, Daniel Guerra","doi":"10.1109/GreenTech52845.2022.9772027","DOIUrl":null,"url":null,"abstract":"Inspired by energy requirements for future Artemis missions, the researchers have designed a non-tracking fiber optic solar concentrator based on Fresnel lens capabilities to harness solar energy and convert it into usable power for extraterrestrial applications. Since testing in a lunar environment is not currently feasible, the objective is to implement simulations that will mimic the future Earth- based prototype experimentation to validate software parameters, with the further intent to be adapted to lunar requirements. Design validation, which demonstrated the optical and thermal aspects of each material within the system, utilized mathematical models in conjunction with Simscale, MATLAB, and Optica EM. Researchers used the refractive index and thermal characteristics for each lens material used in the study, finding overall energy efficiency and surface heat intensity for Earth-based simulations. By validating Optica EM and thermal simulations, this scalable and modular Fresnel lens assembly, which requires no ancillary power, can be adapted to fit the needs of extraterrestrial and terrestrial power generation applications.","PeriodicalId":319119,"journal":{"name":"2022 IEEE Green Technologies Conference (GreenTech)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel Non-Tracking Fiber Optic Solar Concentrator\",\"authors\":\"L. Padrón, Luis Rosario, Jordyn Sibert, Jeffrey Gleasman, Daniel Guerra\",\"doi\":\"10.1109/GreenTech52845.2022.9772027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inspired by energy requirements for future Artemis missions, the researchers have designed a non-tracking fiber optic solar concentrator based on Fresnel lens capabilities to harness solar energy and convert it into usable power for extraterrestrial applications. Since testing in a lunar environment is not currently feasible, the objective is to implement simulations that will mimic the future Earth- based prototype experimentation to validate software parameters, with the further intent to be adapted to lunar requirements. Design validation, which demonstrated the optical and thermal aspects of each material within the system, utilized mathematical models in conjunction with Simscale, MATLAB, and Optica EM. Researchers used the refractive index and thermal characteristics for each lens material used in the study, finding overall energy efficiency and surface heat intensity for Earth-based simulations. By validating Optica EM and thermal simulations, this scalable and modular Fresnel lens assembly, which requires no ancillary power, can be adapted to fit the needs of extraterrestrial and terrestrial power generation applications.\",\"PeriodicalId\":319119,\"journal\":{\"name\":\"2022 IEEE Green Technologies Conference (GreenTech)\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Green Technologies Conference (GreenTech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GreenTech52845.2022.9772027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Green Technologies Conference (GreenTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GreenTech52845.2022.9772027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

受未来阿尔忒弥斯任务能源需求的启发,研究人员设计了一种基于菲涅耳透镜功能的非跟踪光纤太阳能聚光器,以利用太阳能并将其转化为可用于地外应用的可用能量。由于在月球环境中进行测试目前还不可行,因此目标是实现模拟,模拟未来基于地球的原型实验,以验证软件参数,并进一步适应月球的要求。设计验证,展示了系统内每种材料的光学和热方面,利用数学模型结合Simscale, MATLAB和Optica EM。研究人员使用了研究中使用的每种透镜材料的折射率和热特性,找到了地球模拟的整体能源效率和表面热强度。通过验证Optica EM和热模拟,这种可扩展的模块化菲涅耳透镜组件不需要辅助电源,可以适应地外和地面发电应用的需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel Non-Tracking Fiber Optic Solar Concentrator
Inspired by energy requirements for future Artemis missions, the researchers have designed a non-tracking fiber optic solar concentrator based on Fresnel lens capabilities to harness solar energy and convert it into usable power for extraterrestrial applications. Since testing in a lunar environment is not currently feasible, the objective is to implement simulations that will mimic the future Earth- based prototype experimentation to validate software parameters, with the further intent to be adapted to lunar requirements. Design validation, which demonstrated the optical and thermal aspects of each material within the system, utilized mathematical models in conjunction with Simscale, MATLAB, and Optica EM. Researchers used the refractive index and thermal characteristics for each lens material used in the study, finding overall energy efficiency and surface heat intensity for Earth-based simulations. By validating Optica EM and thermal simulations, this scalable and modular Fresnel lens assembly, which requires no ancillary power, can be adapted to fit the needs of extraterrestrial and terrestrial power generation applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信