基于符号表示的时态知识图建模研究

Siraj Munir, S. Ferretti
{"title":"基于符号表示的时态知识图建模研究","authors":"Siraj Munir, S. Ferretti","doi":"10.1109/SmartNets58706.2023.10215541","DOIUrl":null,"url":null,"abstract":"Symbolic representation helps us to represent information in a well-defined rule-driven fashion. Currently, there are several ways to represent Knowledge Graphs in general. However, in this work, we extended the implementation of symbolic representation to model domain-oriented temporal Knowledge Graphs. For symbolic representation, we incorporated Horn rules and SWRL (Semantic Web Rule Language). The presented approach is semi-autonomous: (i) we extracted hand-crafted rules and (ii) we utilized the PSyKE (Platform for Symbolic Knowledge Extraction) package to extract some rules automatically from raw data logs. For domain modeling, we targeted a smart industry environment. To validate the proposed model, we conducted a counterfactual study using Knowledge Graph and network analysis for fact-finding and filtering.","PeriodicalId":301834,"journal":{"name":"2023 International Conference on Smart Applications, Communications and Networking (SmartNets)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards symbolic representation-based modeling of Temporal Knowledge Graphs\",\"authors\":\"Siraj Munir, S. Ferretti\",\"doi\":\"10.1109/SmartNets58706.2023.10215541\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Symbolic representation helps us to represent information in a well-defined rule-driven fashion. Currently, there are several ways to represent Knowledge Graphs in general. However, in this work, we extended the implementation of symbolic representation to model domain-oriented temporal Knowledge Graphs. For symbolic representation, we incorporated Horn rules and SWRL (Semantic Web Rule Language). The presented approach is semi-autonomous: (i) we extracted hand-crafted rules and (ii) we utilized the PSyKE (Platform for Symbolic Knowledge Extraction) package to extract some rules automatically from raw data logs. For domain modeling, we targeted a smart industry environment. To validate the proposed model, we conducted a counterfactual study using Knowledge Graph and network analysis for fact-finding and filtering.\",\"PeriodicalId\":301834,\"journal\":{\"name\":\"2023 International Conference on Smart Applications, Communications and Networking (SmartNets)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Smart Applications, Communications and Networking (SmartNets)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SmartNets58706.2023.10215541\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Smart Applications, Communications and Networking (SmartNets)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SmartNets58706.2023.10215541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

符号表示帮助我们以定义良好的规则驱动的方式表示信息。目前,一般有几种表示知识图的方法。然而,在这项工作中,我们扩展了符号表示的实现,以建模面向领域的时间知识图。对于符号表示,我们结合了Horn规则和SWRL(语义Web规则语言)。所提出的方法是半自治的:(i)我们提取手工制作的规则,(ii)我们利用PSyKE(符号知识提取平台)包从原始数据日志中自动提取一些规则。对于领域建模,我们以智能工业环境为目标。为了验证提出的模型,我们使用知识图谱和网络分析进行了反事实研究,以发现和过滤事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards symbolic representation-based modeling of Temporal Knowledge Graphs
Symbolic representation helps us to represent information in a well-defined rule-driven fashion. Currently, there are several ways to represent Knowledge Graphs in general. However, in this work, we extended the implementation of symbolic representation to model domain-oriented temporal Knowledge Graphs. For symbolic representation, we incorporated Horn rules and SWRL (Semantic Web Rule Language). The presented approach is semi-autonomous: (i) we extracted hand-crafted rules and (ii) we utilized the PSyKE (Platform for Symbolic Knowledge Extraction) package to extract some rules automatically from raw data logs. For domain modeling, we targeted a smart industry environment. To validate the proposed model, we conducted a counterfactual study using Knowledge Graph and network analysis for fact-finding and filtering.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信