通过分解Pearson和Spearman相关矩阵应用主成分分析估算血压

Carolina Elizabeth Villegas Colmán, Cynthia Villalba, José Luis Vázquez Noguera, Santiago Gómez-Guerrero
{"title":"通过分解Pearson和Spearman相关矩阵应用主成分分析估算血压","authors":"Carolina Elizabeth Villegas Colmán, Cynthia Villalba, José Luis Vázquez Noguera, Santiago Gómez-Guerrero","doi":"10.1109/CLEI56649.2022.9959954","DOIUrl":null,"url":null,"abstract":"For the training of blood pressure predictive models, it is necessary to determine the optimal number of predictors when the data set is of high dimensionality. Applying the appropriate dimensionality reduction technique according to the dataset will reduce the number of components and improve the performance of the predictive models. This work proposes the dimensionality reduction of the data set through the explorations of linear and nonlinear relationships of photoplethysmography signals by applying principal component analysis through the decomposition of Pearson and Spearman correlation matrices. The differences between the explained and cumulative variances of the principal components are minimal by applying Pearson and Spearman correlations. The predictive models trained with the first 5 principal components obtained better results for the estimation of blood pressure, with minimal loss of information with respect to the original data set.","PeriodicalId":156073,"journal":{"name":"2022 XVLIII Latin American Computer Conference (CLEI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimation of Blood Pressure by Applying Principal Component Analysis Through the Decomposition of Pearson and Spearman Correlation Matrices\",\"authors\":\"Carolina Elizabeth Villegas Colmán, Cynthia Villalba, José Luis Vázquez Noguera, Santiago Gómez-Guerrero\",\"doi\":\"10.1109/CLEI56649.2022.9959954\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the training of blood pressure predictive models, it is necessary to determine the optimal number of predictors when the data set is of high dimensionality. Applying the appropriate dimensionality reduction technique according to the dataset will reduce the number of components and improve the performance of the predictive models. This work proposes the dimensionality reduction of the data set through the explorations of linear and nonlinear relationships of photoplethysmography signals by applying principal component analysis through the decomposition of Pearson and Spearman correlation matrices. The differences between the explained and cumulative variances of the principal components are minimal by applying Pearson and Spearman correlations. The predictive models trained with the first 5 principal components obtained better results for the estimation of blood pressure, with minimal loss of information with respect to the original data set.\",\"PeriodicalId\":156073,\"journal\":{\"name\":\"2022 XVLIII Latin American Computer Conference (CLEI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 XVLIII Latin American Computer Conference (CLEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLEI56649.2022.9959954\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 XVLIII Latin American Computer Conference (CLEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEI56649.2022.9959954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于血压预测模型的训练,当数据集是高维数时,需要确定最优的预测数。根据数据集采用适当的降维技术可以减少预测模型的成分数量,提高预测模型的性能。本研究通过分解Pearson和Spearman相关矩阵,应用主成分分析,探索光容积脉搏波信号的线性和非线性关系,提出了数据集的降维方法。通过应用Pearson和Spearman相关性,主成分的解释方差和累积方差之间的差异是最小的。使用前5个主成分训练的预测模型在估计血压方面获得了更好的结果,相对于原始数据集的信息损失最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimation of Blood Pressure by Applying Principal Component Analysis Through the Decomposition of Pearson and Spearman Correlation Matrices
For the training of blood pressure predictive models, it is necessary to determine the optimal number of predictors when the data set is of high dimensionality. Applying the appropriate dimensionality reduction technique according to the dataset will reduce the number of components and improve the performance of the predictive models. This work proposes the dimensionality reduction of the data set through the explorations of linear and nonlinear relationships of photoplethysmography signals by applying principal component analysis through the decomposition of Pearson and Spearman correlation matrices. The differences between the explained and cumulative variances of the principal components are minimal by applying Pearson and Spearman correlations. The predictive models trained with the first 5 principal components obtained better results for the estimation of blood pressure, with minimal loss of information with respect to the original data set.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信