{"title":"用于28GHz移动通信的40nm CMOS高效率线性功率放大器","authors":"Yang Zhang, P. Reynaert","doi":"10.1109/RFIC.2017.7969010","DOIUrl":null,"url":null,"abstract":"This paper presents a high-efficiency, linear power amplifier (PA) for 28GHz mobile communications in 40nm CMOS technology. The design and layout are optimized for high linearity while maintaining high gain and output power. A capacitance neutralized differential pair with source degeneration inductor for linearity enhancement is discussed. The inductive degeneration technique greatly increases the optimal load impedance, which enables a low loss parallel power combining. The complete PA achieves a measured saturated output power of 18.1dBm with 41.5% power-added efficiency (PAE). With 6 Gb/s QAM-64 signals, the proposed PA achieves an average output power of 8.4dBm and 8.8% PAE, with −25 dBc EVM. All measurements are performed with a fixed bias condition.","PeriodicalId":349922,"journal":{"name":"2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"A high-efficiency linear power amplifier for 28GHz mobile communications in 40nm CMOS\",\"authors\":\"Yang Zhang, P. Reynaert\",\"doi\":\"10.1109/RFIC.2017.7969010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a high-efficiency, linear power amplifier (PA) for 28GHz mobile communications in 40nm CMOS technology. The design and layout are optimized for high linearity while maintaining high gain and output power. A capacitance neutralized differential pair with source degeneration inductor for linearity enhancement is discussed. The inductive degeneration technique greatly increases the optimal load impedance, which enables a low loss parallel power combining. The complete PA achieves a measured saturated output power of 18.1dBm with 41.5% power-added efficiency (PAE). With 6 Gb/s QAM-64 signals, the proposed PA achieves an average output power of 8.4dBm and 8.8% PAE, with −25 dBc EVM. All measurements are performed with a fixed bias condition.\",\"PeriodicalId\":349922,\"journal\":{\"name\":\"2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFIC.2017.7969010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIC.2017.7969010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A high-efficiency linear power amplifier for 28GHz mobile communications in 40nm CMOS
This paper presents a high-efficiency, linear power amplifier (PA) for 28GHz mobile communications in 40nm CMOS technology. The design and layout are optimized for high linearity while maintaining high gain and output power. A capacitance neutralized differential pair with source degeneration inductor for linearity enhancement is discussed. The inductive degeneration technique greatly increases the optimal load impedance, which enables a low loss parallel power combining. The complete PA achieves a measured saturated output power of 18.1dBm with 41.5% power-added efficiency (PAE). With 6 Gb/s QAM-64 signals, the proposed PA achieves an average output power of 8.4dBm and 8.8% PAE, with −25 dBc EVM. All measurements are performed with a fixed bias condition.