电子初始位置对高能电子与线偏振紧聚焦激光相互作用空间辐射的影响

Xi Zhou, Yilv Yan, S. Ren, Hui Liu, Youwei Tian
{"title":"电子初始位置对高能电子与线偏振紧聚焦激光相互作用空间辐射的影响","authors":"Xi Zhou, Yilv Yan, S. Ren, Hui Liu, Youwei Tian","doi":"10.1117/12.2600773","DOIUrl":null,"url":null,"abstract":"The scattering model of a single high-energy electron interacting with a Gaussian laser pulse is constructed according to the Lagrange’s equation, and the trajectory of the electron and the radiation characteristics of the scattered light are simulated by MATLAB, also, the influence of the initial position of the electron on the space energy radiation is discussed in detail. The results show that the initially static high-energy electron first oscillates in the +z direction in a plane, and then travels along a straight line after interacting with the linearly polarized tightly focused intense laser. As the initial position of the electron moves to the positive direction of z axis, the azimuth angle of the maximum energy radiation direction remains unchanged at 180°, while the polar angle gradually decreases and finally stabilizes at 20.5°. The maximum radiation energy in the whole space is obtained when the electron is initially set at (0,0,−7λ0 ) with the polar angle and the azimuth angle being 23.5° and 180° respectively, and the corresponding time evolution and spectrum of the process are discussed qualitatively.","PeriodicalId":330466,"journal":{"name":"Sixteenth National Conference on Laser Technology and Optoelectronics","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of electron’s initial position on space radiation of a high-energy electron interacting with linearly polarized tightly focused laser\",\"authors\":\"Xi Zhou, Yilv Yan, S. Ren, Hui Liu, Youwei Tian\",\"doi\":\"10.1117/12.2600773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The scattering model of a single high-energy electron interacting with a Gaussian laser pulse is constructed according to the Lagrange’s equation, and the trajectory of the electron and the radiation characteristics of the scattered light are simulated by MATLAB, also, the influence of the initial position of the electron on the space energy radiation is discussed in detail. The results show that the initially static high-energy electron first oscillates in the +z direction in a plane, and then travels along a straight line after interacting with the linearly polarized tightly focused intense laser. As the initial position of the electron moves to the positive direction of z axis, the azimuth angle of the maximum energy radiation direction remains unchanged at 180°, while the polar angle gradually decreases and finally stabilizes at 20.5°. The maximum radiation energy in the whole space is obtained when the electron is initially set at (0,0,−7λ0 ) with the polar angle and the azimuth angle being 23.5° and 180° respectively, and the corresponding time evolution and spectrum of the process are discussed qualitatively.\",\"PeriodicalId\":330466,\"journal\":{\"name\":\"Sixteenth National Conference on Laser Technology and Optoelectronics\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixteenth National Conference on Laser Technology and Optoelectronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2600773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixteenth National Conference on Laser Technology and Optoelectronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2600773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

根据拉格朗日方程建立了单个高能电子与高斯激光脉冲相互作用的散射模型,利用MATLAB模拟了电子的运动轨迹和散射光的辐射特性,并详细讨论了电子初始位置对空间能量辐射的影响。结果表明:初始静态高能电子首先在平面上沿+z方向振荡,然后与线偏振紧密聚焦强激光相互作用后沿直线运动;随着电子初始位置向z轴正方向移动,最大能量辐射方向的方位角保持在180°不变,而极角逐渐减小,最终稳定在20.5°。当电子初始设置在(0,0,- 7λ0),极角和方位角分别为23.5°和180°时,得到了整个空间的最大辐射能量,并定性地讨论了相应的时间演化和光谱过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of electron’s initial position on space radiation of a high-energy electron interacting with linearly polarized tightly focused laser
The scattering model of a single high-energy electron interacting with a Gaussian laser pulse is constructed according to the Lagrange’s equation, and the trajectory of the electron and the radiation characteristics of the scattered light are simulated by MATLAB, also, the influence of the initial position of the electron on the space energy radiation is discussed in detail. The results show that the initially static high-energy electron first oscillates in the +z direction in a plane, and then travels along a straight line after interacting with the linearly polarized tightly focused intense laser. As the initial position of the electron moves to the positive direction of z axis, the azimuth angle of the maximum energy radiation direction remains unchanged at 180°, while the polar angle gradually decreases and finally stabilizes at 20.5°. The maximum radiation energy in the whole space is obtained when the electron is initially set at (0,0,−7λ0 ) with the polar angle and the azimuth angle being 23.5° and 180° respectively, and the corresponding time evolution and spectrum of the process are discussed qualitatively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信