基于改进OLS算法的RBF神经网络研究

Zeng Zhezhao, Jiang Jie
{"title":"基于改进OLS算法的RBF神经网络研究","authors":"Zeng Zhezhao, Jiang Jie","doi":"10.1109/ICICTA.2011.70","DOIUrl":null,"url":null,"abstract":"Training of parameters in RBF neural network, this article proposes an optimization of RBF neural network parameters algorithm, which can overcome the disadvantages of select of data center and weights in RBF neural network. The algorithm process input data normalization and compute network output and hidden layer output angle cosine firstly, a set of data being established as the network center when cosine value is most minimum. And then determine network weights based on OLS algorithm. Simulation results show that the algorithm can reduce the training sample data and increase network training speed when train RBF neural network.","PeriodicalId":368130,"journal":{"name":"2011 Fourth International Conference on Intelligent Computation Technology and Automation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Study of RBF Neural Network Based on Improved OLS Algorithm\",\"authors\":\"Zeng Zhezhao, Jiang Jie\",\"doi\":\"10.1109/ICICTA.2011.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Training of parameters in RBF neural network, this article proposes an optimization of RBF neural network parameters algorithm, which can overcome the disadvantages of select of data center and weights in RBF neural network. The algorithm process input data normalization and compute network output and hidden layer output angle cosine firstly, a set of data being established as the network center when cosine value is most minimum. And then determine network weights based on OLS algorithm. Simulation results show that the algorithm can reduce the training sample data and increase network training speed when train RBF neural network.\",\"PeriodicalId\":368130,\"journal\":{\"name\":\"2011 Fourth International Conference on Intelligent Computation Technology and Automation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Conference on Intelligent Computation Technology and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICTA.2011.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Conference on Intelligent Computation Technology and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICTA.2011.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

针对RBF神经网络参数的训练,提出了一种优化RBF神经网络参数的算法,克服了RBF神经网络在数据中心选择和权值选择上的不足。该算法对输入数据进行归一化处理,首先计算网络输出和隐层输出角余弦,余弦值最小时建立一组数据作为网络中心。然后根据OLS算法确定网络权重。仿真结果表明,该算法在训练RBF神经网络时可以减少训练样本数据,提高网络训练速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of RBF Neural Network Based on Improved OLS Algorithm
Training of parameters in RBF neural network, this article proposes an optimization of RBF neural network parameters algorithm, which can overcome the disadvantages of select of data center and weights in RBF neural network. The algorithm process input data normalization and compute network output and hidden layer output angle cosine firstly, a set of data being established as the network center when cosine value is most minimum. And then determine network weights based on OLS algorithm. Simulation results show that the algorithm can reduce the training sample data and increase network training speed when train RBF neural network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信