经典电动力学三维kepler二体问题的周期、跃迁和逃逸轨迹

V. Angelov
{"title":"经典电动力学三维kepler二体问题的周期、跃迁和逃逸轨迹","authors":"V. Angelov","doi":"10.9734/psij/2023/v27i4797","DOIUrl":null,"url":null,"abstract":"In a previous paper we studied the Kepler problem for the extended Synge’s 2-body problem of classical electrodynamics. We have used the radiation terms introduced in our previous papers and prove an existence–uniqueness of a periodic orbit in polar coordinates which confirmed the Bohr's hypothesis of the existence of the stationary states in the frame of classical electrodynamics. Our main aim here is to show the existence of trajectories of transition оf the particle orbiting the nucleus from one stationary state to another excited state. We also prove the existence of escape trajectories. This is made by a choice of suitable function space and applying fixed point method.","PeriodicalId":124795,"journal":{"name":"Physical Science International Journal","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic, Transition and Escape Trajectories for 3D-Kepler 2-Body Problem of Classical Electrodynamics\",\"authors\":\"V. Angelov\",\"doi\":\"10.9734/psij/2023/v27i4797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a previous paper we studied the Kepler problem for the extended Synge’s 2-body problem of classical electrodynamics. We have used the radiation terms introduced in our previous papers and prove an existence–uniqueness of a periodic orbit in polar coordinates which confirmed the Bohr's hypothesis of the existence of the stationary states in the frame of classical electrodynamics. Our main aim here is to show the existence of trajectories of transition оf the particle orbiting the nucleus from one stationary state to another excited state. We also prove the existence of escape trajectories. This is made by a choice of suitable function space and applying fixed point method.\",\"PeriodicalId\":124795,\"journal\":{\"name\":\"Physical Science International Journal\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Science International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/psij/2023/v27i4797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Science International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/psij/2023/v27i4797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在上一篇论文中,我们研究了经典电动力学中扩展的Synge二体问题的Kepler问题。我们利用以前论文中引入的辐射项,证明了极坐标系中周期轨道的存在唯一性,证实了经典电动力学框架中玻尔稳态存在的假设。我们在这里的主要目的是证明粒子绕原子核从一个定态到另一个激发态的跃迁轨迹的存在。我们还证明了逃逸轨迹的存在性。这是通过选择合适的函数空间和应用不动点法来实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Periodic, Transition and Escape Trajectories for 3D-Kepler 2-Body Problem of Classical Electrodynamics
In a previous paper we studied the Kepler problem for the extended Synge’s 2-body problem of classical electrodynamics. We have used the radiation terms introduced in our previous papers and prove an existence–uniqueness of a periodic orbit in polar coordinates which confirmed the Bohr's hypothesis of the existence of the stationary states in the frame of classical electrodynamics. Our main aim here is to show the existence of trajectories of transition оf the particle orbiting the nucleus from one stationary state to another excited state. We also prove the existence of escape trajectories. This is made by a choice of suitable function space and applying fixed point method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信