{"title":"基于遗传算法的IPM同步电机模糊控制器","authors":"M.A. Rahman, M. Uddin","doi":"10.1109/ISIE.2003.1267960","DOIUrl":null,"url":null,"abstract":"This paper presents a novel speed control scheme using a new genetic-based fuzzy logic controller (GFLC) for an interior permanent magnet synchronous motor (IPMSM) drive. The proposed GFLC is designed to have less computational burden, which makes it suitable for online implementation. The parameters for the GFLC are tuned by genetic algorithm (GA). The complete vector control scheme incorporating the GFLC is successfully implemented in real time using a digital signal processor board DS 1102 for a laboratory 1 hp interior permanent magnet motor. The efficacy of the proposed GFLC based IPMSM drive is verified by simulation as well as experimental results at different dynamic operating conditions such as sudden load change, parameter variations, step change of command speed, etc. The proposed fuzzy logic controller is found to be a robust controller for application in IPMSM drive.","PeriodicalId":166431,"journal":{"name":"2003 IEEE International Symposium on Industrial Electronics ( Cat. No.03TH8692)","volume":"175 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A novel genetic algorithm based fuzzy logic controller for IPM synchronous motor drive\",\"authors\":\"M.A. Rahman, M. Uddin\",\"doi\":\"10.1109/ISIE.2003.1267960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel speed control scheme using a new genetic-based fuzzy logic controller (GFLC) for an interior permanent magnet synchronous motor (IPMSM) drive. The proposed GFLC is designed to have less computational burden, which makes it suitable for online implementation. The parameters for the GFLC are tuned by genetic algorithm (GA). The complete vector control scheme incorporating the GFLC is successfully implemented in real time using a digital signal processor board DS 1102 for a laboratory 1 hp interior permanent magnet motor. The efficacy of the proposed GFLC based IPMSM drive is verified by simulation as well as experimental results at different dynamic operating conditions such as sudden load change, parameter variations, step change of command speed, etc. The proposed fuzzy logic controller is found to be a robust controller for application in IPMSM drive.\",\"PeriodicalId\":166431,\"journal\":{\"name\":\"2003 IEEE International Symposium on Industrial Electronics ( Cat. No.03TH8692)\",\"volume\":\"175 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2003 IEEE International Symposium on Industrial Electronics ( Cat. No.03TH8692)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIE.2003.1267960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE International Symposium on Industrial Electronics ( Cat. No.03TH8692)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2003.1267960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel genetic algorithm based fuzzy logic controller for IPM synchronous motor drive
This paper presents a novel speed control scheme using a new genetic-based fuzzy logic controller (GFLC) for an interior permanent magnet synchronous motor (IPMSM) drive. The proposed GFLC is designed to have less computational burden, which makes it suitable for online implementation. The parameters for the GFLC are tuned by genetic algorithm (GA). The complete vector control scheme incorporating the GFLC is successfully implemented in real time using a digital signal processor board DS 1102 for a laboratory 1 hp interior permanent magnet motor. The efficacy of the proposed GFLC based IPMSM drive is verified by simulation as well as experimental results at different dynamic operating conditions such as sudden load change, parameter variations, step change of command speed, etc. The proposed fuzzy logic controller is found to be a robust controller for application in IPMSM drive.