非重复扰动系统的扩展状态观测器迭代学习控制

Shiyan Li, Xuefang Li
{"title":"非重复扰动系统的扩展状态观测器迭代学习控制","authors":"Shiyan Li, Xuefang Li","doi":"10.1109/DDCLS58216.2023.10167248","DOIUrl":null,"url":null,"abstract":"A novel extended state observer (ESO) based iterative learning control (ILC) scheme is investigated, including three channels, namely, feedforward, feedback, and disturbance rejection channels. The goal of this work is to achieve high-accuracy tracking of nonlinear systems in the presence of nonrepetitive disturbances under repetitive operating conditions. The ESO is used to estimate and offset the nonrepetitive disturbance in real time, which reduces the sensitivity of the controller to system parameters and operating environments. The convergence of control scheme are analyzed, and the estimation accuracy of the observer for disturbances with different frequencies is demonstrated. Finally, an implementation to an automatic guided vehicle (AGV) is illustrated to verify the effectiveness of the proposed control scheme.","PeriodicalId":415532,"journal":{"name":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extended State Observer based Iterative Learning Control for Systems with Nonrepetitive Disturbances\",\"authors\":\"Shiyan Li, Xuefang Li\",\"doi\":\"10.1109/DDCLS58216.2023.10167248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel extended state observer (ESO) based iterative learning control (ILC) scheme is investigated, including three channels, namely, feedforward, feedback, and disturbance rejection channels. The goal of this work is to achieve high-accuracy tracking of nonlinear systems in the presence of nonrepetitive disturbances under repetitive operating conditions. The ESO is used to estimate and offset the nonrepetitive disturbance in real time, which reduces the sensitivity of the controller to system parameters and operating environments. The convergence of control scheme are analyzed, and the estimation accuracy of the observer for disturbances with different frequencies is demonstrated. Finally, an implementation to an automatic guided vehicle (AGV) is illustrated to verify the effectiveness of the proposed control scheme.\",\"PeriodicalId\":415532,\"journal\":{\"name\":\"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS58216.2023.10167248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 12th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS58216.2023.10167248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了一种新的基于扩展状态观测器(ESO)的迭代学习控制(ILC)方案,该方案包括三个通道,即前馈、反馈和抗扰通道。这项工作的目标是实现在重复操作条件下存在非重复干扰的非线性系统的高精度跟踪。ESO用于实时估计和抵消非重复扰动,降低了控制器对系统参数和运行环境的敏感性。分析了控制方案的收敛性,证明了观测器对不同频率干扰的估计精度。最后,以自动导向车辆(AGV)为例,验证了所提控制方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extended State Observer based Iterative Learning Control for Systems with Nonrepetitive Disturbances
A novel extended state observer (ESO) based iterative learning control (ILC) scheme is investigated, including three channels, namely, feedforward, feedback, and disturbance rejection channels. The goal of this work is to achieve high-accuracy tracking of nonlinear systems in the presence of nonrepetitive disturbances under repetitive operating conditions. The ESO is used to estimate and offset the nonrepetitive disturbance in real time, which reduces the sensitivity of the controller to system parameters and operating environments. The convergence of control scheme are analyzed, and the estimation accuracy of the observer for disturbances with different frequencies is demonstrated. Finally, an implementation to an automatic guided vehicle (AGV) is illustrated to verify the effectiveness of the proposed control scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信