一种改进的SLT去噪方法

X. Chen, Silong Peng
{"title":"一种改进的SLT去噪方法","authors":"X. Chen, Silong Peng","doi":"10.1109/SITIS.2008.29","DOIUrl":null,"url":null,"abstract":"Wavelet shrinkage denoising has been investigated for a long time due to its simplicity and good results. SLT denoising proposed by Yacov Hel-Or et al. recently generates mapping functions (MFs), also known as shrinkage function, which are learned directly from example images using least-squares fitting. In this paper, we design MFs with the prior information properly incorporated in SLT denoising. Since coefficients in the same wavelet subband have different statistic characteristics, we first classify wavelet coefficients into different classes. Then MFs for different regions are deduced with corresponding prior model. Experimental results give a direct show that the proposed method obtains higher PSNR (Peak Signal to Noise Ratio), and improve visual quality of the denoised images.","PeriodicalId":202698,"journal":{"name":"2008 IEEE International Conference on Signal Image Technology and Internet Based Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Modified SLT Denoising Method\",\"authors\":\"X. Chen, Silong Peng\",\"doi\":\"10.1109/SITIS.2008.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wavelet shrinkage denoising has been investigated for a long time due to its simplicity and good results. SLT denoising proposed by Yacov Hel-Or et al. recently generates mapping functions (MFs), also known as shrinkage function, which are learned directly from example images using least-squares fitting. In this paper, we design MFs with the prior information properly incorporated in SLT denoising. Since coefficients in the same wavelet subband have different statistic characteristics, we first classify wavelet coefficients into different classes. Then MFs for different regions are deduced with corresponding prior model. Experimental results give a direct show that the proposed method obtains higher PSNR (Peak Signal to Noise Ratio), and improve visual quality of the denoised images.\",\"PeriodicalId\":202698,\"journal\":{\"name\":\"2008 IEEE International Conference on Signal Image Technology and Internet Based Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Signal Image Technology and Internet Based Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITIS.2008.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Signal Image Technology and Internet Based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2008.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

小波收缩去噪以其简单、效果好而得到了广泛的研究。Yacov helo - or等人最近提出的SLT去噪产生映射函数(MFs),也称为收缩函数,它直接从使用最小二乘拟合的示例图像中学习。在本文中,我们设计了将先验信息适当地纳入SLT去噪的mf。由于同一小波子带中的系数具有不同的统计特性,我们首先对小波系数进行了分类。然后利用相应的先验模型,推导出不同区域的MFs。实验结果直接表明,该方法获得了较高的峰值信噪比,改善了去噪后图像的视觉质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Modified SLT Denoising Method
Wavelet shrinkage denoising has been investigated for a long time due to its simplicity and good results. SLT denoising proposed by Yacov Hel-Or et al. recently generates mapping functions (MFs), also known as shrinkage function, which are learned directly from example images using least-squares fitting. In this paper, we design MFs with the prior information properly incorporated in SLT denoising. Since coefficients in the same wavelet subband have different statistic characteristics, we first classify wavelet coefficients into different classes. Then MFs for different regions are deduced with corresponding prior model. Experimental results give a direct show that the proposed method obtains higher PSNR (Peak Signal to Noise Ratio), and improve visual quality of the denoised images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信