{"title":"一种改进的SLT去噪方法","authors":"X. Chen, Silong Peng","doi":"10.1109/SITIS.2008.29","DOIUrl":null,"url":null,"abstract":"Wavelet shrinkage denoising has been investigated for a long time due to its simplicity and good results. SLT denoising proposed by Yacov Hel-Or et al. recently generates mapping functions (MFs), also known as shrinkage function, which are learned directly from example images using least-squares fitting. In this paper, we design MFs with the prior information properly incorporated in SLT denoising. Since coefficients in the same wavelet subband have different statistic characteristics, we first classify wavelet coefficients into different classes. Then MFs for different regions are deduced with corresponding prior model. Experimental results give a direct show that the proposed method obtains higher PSNR (Peak Signal to Noise Ratio), and improve visual quality of the denoised images.","PeriodicalId":202698,"journal":{"name":"2008 IEEE International Conference on Signal Image Technology and Internet Based Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Modified SLT Denoising Method\",\"authors\":\"X. Chen, Silong Peng\",\"doi\":\"10.1109/SITIS.2008.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wavelet shrinkage denoising has been investigated for a long time due to its simplicity and good results. SLT denoising proposed by Yacov Hel-Or et al. recently generates mapping functions (MFs), also known as shrinkage function, which are learned directly from example images using least-squares fitting. In this paper, we design MFs with the prior information properly incorporated in SLT denoising. Since coefficients in the same wavelet subband have different statistic characteristics, we first classify wavelet coefficients into different classes. Then MFs for different regions are deduced with corresponding prior model. Experimental results give a direct show that the proposed method obtains higher PSNR (Peak Signal to Noise Ratio), and improve visual quality of the denoised images.\",\"PeriodicalId\":202698,\"journal\":{\"name\":\"2008 IEEE International Conference on Signal Image Technology and Internet Based Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Conference on Signal Image Technology and Internet Based Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITIS.2008.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Signal Image Technology and Internet Based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2008.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wavelet shrinkage denoising has been investigated for a long time due to its simplicity and good results. SLT denoising proposed by Yacov Hel-Or et al. recently generates mapping functions (MFs), also known as shrinkage function, which are learned directly from example images using least-squares fitting. In this paper, we design MFs with the prior information properly incorporated in SLT denoising. Since coefficients in the same wavelet subband have different statistic characteristics, we first classify wavelet coefficients into different classes. Then MFs for different regions are deduced with corresponding prior model. Experimental results give a direct show that the proposed method obtains higher PSNR (Peak Signal to Noise Ratio), and improve visual quality of the denoised images.