基于电动汽车感知的交通场景风险等级评估方法

Liangyu Tian, Haoran Li, Wangling Wei, Sifa Zheng, Chuan Sun
{"title":"基于电动汽车感知的交通场景风险等级评估方法","authors":"Liangyu Tian, Haoran Li, Wangling Wei, Sifa Zheng, Chuan Sun","doi":"10.1109/IV55152.2023.10186810","DOIUrl":null,"url":null,"abstract":"How to fully test the safety and functionality under different driving scenarios is a key issue for the development and application of autonomous vehicles. In this study, aimed at the test scenarios of autonomous vehicle, we propose a lidar-camera fusion approach for traffic environment sensing. Based on the successful Lift-Splat-Shoot (LSS) model, we propose a unique data enhancement strategy to develop the fusion accuracy. Through building a test dataset with the highprecision acquisition vehicle, the proposed method is verified that the new fusion authorism proposed in this paper can accurately distinguish the translation, scale, orientation and velocity of the target. This study can promote test scenario generation methods.","PeriodicalId":195148,"journal":{"name":"2023 IEEE Intelligent Vehicles Symposium (IV)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Risk Level Assessment Method for Traffic Scenarios Based on BEV Perception\",\"authors\":\"Liangyu Tian, Haoran Li, Wangling Wei, Sifa Zheng, Chuan Sun\",\"doi\":\"10.1109/IV55152.2023.10186810\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How to fully test the safety and functionality under different driving scenarios is a key issue for the development and application of autonomous vehicles. In this study, aimed at the test scenarios of autonomous vehicle, we propose a lidar-camera fusion approach for traffic environment sensing. Based on the successful Lift-Splat-Shoot (LSS) model, we propose a unique data enhancement strategy to develop the fusion accuracy. Through building a test dataset with the highprecision acquisition vehicle, the proposed method is verified that the new fusion authorism proposed in this paper can accurately distinguish the translation, scale, orientation and velocity of the target. This study can promote test scenario generation methods.\",\"PeriodicalId\":195148,\"journal\":{\"name\":\"2023 IEEE Intelligent Vehicles Symposium (IV)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Intelligent Vehicles Symposium (IV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IV55152.2023.10186810\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV55152.2023.10186810","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如何在不同驾驶场景下充分测试自动驾驶汽车的安全性和功能性,是自动驾驶汽车发展和应用的关键问题。本研究针对自动驾驶汽车的测试场景,提出了一种用于交通环境感知的激光雷达-摄像机融合方法。基于成功的LSS模型,我们提出了一种独特的数据增强策略来提高融合精度。通过建立高精度采集车辆的测试数据集,验证了本文提出的新融合权威能够准确区分目标的平移、尺度、方向和速度。本研究可以促进测试场景生成方法的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Risk Level Assessment Method for Traffic Scenarios Based on BEV Perception
How to fully test the safety and functionality under different driving scenarios is a key issue for the development and application of autonomous vehicles. In this study, aimed at the test scenarios of autonomous vehicle, we propose a lidar-camera fusion approach for traffic environment sensing. Based on the successful Lift-Splat-Shoot (LSS) model, we propose a unique data enhancement strategy to develop the fusion accuracy. Through building a test dataset with the highprecision acquisition vehicle, the proposed method is verified that the new fusion authorism proposed in this paper can accurately distinguish the translation, scale, orientation and velocity of the target. This study can promote test scenario generation methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信