采用低通滤波和时间反转特征序列作为语音增强深度网络数据增强的初步研究

Che-Wei Liao, Ping-Chen Wu, J. Hung
{"title":"采用低通滤波和时间反转特征序列作为语音增强深度网络数据增强的初步研究","authors":"Che-Wei Liao, Ping-Chen Wu, J. Hung","doi":"10.1109/ISPACS57703.2022.10082819","DOIUrl":null,"url":null,"abstract":"The efficacy of deep neural network (DNN)-based speech enhancement (SE) techniques primarily relies on the amount and versatility of training data. When only a small training set is available, we often exploit data augmentation methods to enlarge the training set to avoid overfitting issues and thus improve the generalization capability of the learned network. In this study, we present two feature-based data augmentation methods in the learning of an SE network. Given the original feature sequences in the training set, we create the corresponding lowpass-filtered sequences with discrete wavelet transform (DWT) and time-reversed sequences. Then these two augmented sequences are used together with the original ones to train the SE network. Preliminary experimental results indicate that the presented data augmentation methods can improve the ideal-ratio-mask (IRM) network by providing the noisy utterances in the test set with a higher perceptual speech Quality(PESQ).","PeriodicalId":410603,"journal":{"name":"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Preliminary Study of Employing Lowpass-Filtered and Time-Reversed Feature Sequences as Data Augmentation for Speech Enhancement Deep Networks\",\"authors\":\"Che-Wei Liao, Ping-Chen Wu, J. Hung\",\"doi\":\"10.1109/ISPACS57703.2022.10082819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The efficacy of deep neural network (DNN)-based speech enhancement (SE) techniques primarily relies on the amount and versatility of training data. When only a small training set is available, we often exploit data augmentation methods to enlarge the training set to avoid overfitting issues and thus improve the generalization capability of the learned network. In this study, we present two feature-based data augmentation methods in the learning of an SE network. Given the original feature sequences in the training set, we create the corresponding lowpass-filtered sequences with discrete wavelet transform (DWT) and time-reversed sequences. Then these two augmented sequences are used together with the original ones to train the SE network. Preliminary experimental results indicate that the presented data augmentation methods can improve the ideal-ratio-mask (IRM) network by providing the noisy utterances in the test set with a higher perceptual speech Quality(PESQ).\",\"PeriodicalId\":410603,\"journal\":{\"name\":\"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS57703.2022.10082819\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS57703.2022.10082819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于深度神经网络(DNN)的语音增强(SE)技术的有效性主要取决于训练数据的数量和通用性。当只有一个小的训练集可用时,我们经常利用数据增强方法来扩大训练集,以避免过拟合问题,从而提高学习网络的泛化能力。在本研究中,我们提出了两种基于特征的数据增强方法用于SE网络的学习。给定训练集中的原始特征序列,我们使用离散小波变换(DWT)和时间反转序列创建相应的低通滤波序列。然后将这两个增广序列与原始序列一起训练SE网络。初步的实验结果表明,所提出的数据增强方法可以改善理想比掩码(IRM)网络,为测试集中的噪声语音提供更高的感知语音质量(PESQ)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Preliminary Study of Employing Lowpass-Filtered and Time-Reversed Feature Sequences as Data Augmentation for Speech Enhancement Deep Networks
The efficacy of deep neural network (DNN)-based speech enhancement (SE) techniques primarily relies on the amount and versatility of training data. When only a small training set is available, we often exploit data augmentation methods to enlarge the training set to avoid overfitting issues and thus improve the generalization capability of the learned network. In this study, we present two feature-based data augmentation methods in the learning of an SE network. Given the original feature sequences in the training set, we create the corresponding lowpass-filtered sequences with discrete wavelet transform (DWT) and time-reversed sequences. Then these two augmented sequences are used together with the original ones to train the SE network. Preliminary experimental results indicate that the presented data augmentation methods can improve the ideal-ratio-mask (IRM) network by providing the noisy utterances in the test set with a higher perceptual speech Quality(PESQ).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信