模拟退火生成多初始种群的遗传规划

Takuya Mototsuka, Akira Hara, J. Kushida, T. Takahama
{"title":"模拟退火生成多初始种群的遗传规划","authors":"Takuya Mototsuka, Akira Hara, J. Kushida, T. Takahama","doi":"10.1109/IWCIA.2013.6624797","DOIUrl":null,"url":null,"abstract":"Genetic Programming (GP) and Simulated Annealing Programming (SAP) are typical metaheuristic methods for automatic programming. We propose a new method, Parallel - Genetic and Annealing Programming (P-GAP) which combines GP and SAP. In P-GAP, multiple initial populations are generated by SAP. Respective populations evolve by parallel GP. As the generation proceeds, populations are integrated gradually. To examine the effectiveness, we compared P-GAP with the conventional methods in five test problems. As a result, P-GAP showed better performance than GP and SAP.","PeriodicalId":257474,"journal":{"name":"2013 IEEE 6th International Workshop on Computational Intelligence and Applications (IWCIA)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Genetic programming with multiple initial populations generated by simulated annealing\",\"authors\":\"Takuya Mototsuka, Akira Hara, J. Kushida, T. Takahama\",\"doi\":\"10.1109/IWCIA.2013.6624797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genetic Programming (GP) and Simulated Annealing Programming (SAP) are typical metaheuristic methods for automatic programming. We propose a new method, Parallel - Genetic and Annealing Programming (P-GAP) which combines GP and SAP. In P-GAP, multiple initial populations are generated by SAP. Respective populations evolve by parallel GP. As the generation proceeds, populations are integrated gradually. To examine the effectiveness, we compared P-GAP with the conventional methods in five test problems. As a result, P-GAP showed better performance than GP and SAP.\",\"PeriodicalId\":257474,\"journal\":{\"name\":\"2013 IEEE 6th International Workshop on Computational Intelligence and Applications (IWCIA)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 6th International Workshop on Computational Intelligence and Applications (IWCIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCIA.2013.6624797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 6th International Workshop on Computational Intelligence and Applications (IWCIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCIA.2013.6624797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

遗传规划(GP)和模拟退火规划(SAP)是典型的自动规划元启发式方法。本文提出了一种结合GP和SAP的并行遗传退火规划(P-GAP)方法。在P-GAP中,由SAP生成多个初始种群,各种群通过并行GP进化。随着一代的发展,人口逐渐融合。为了检验P-GAP方法的有效性,我们在五个测试问题中将P-GAP方法与常规方法进行了比较。结果表明,P-GAP的性能优于GP和SAP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic programming with multiple initial populations generated by simulated annealing
Genetic Programming (GP) and Simulated Annealing Programming (SAP) are typical metaheuristic methods for automatic programming. We propose a new method, Parallel - Genetic and Annealing Programming (P-GAP) which combines GP and SAP. In P-GAP, multiple initial populations are generated by SAP. Respective populations evolve by parallel GP. As the generation proceeds, populations are integrated gradually. To examine the effectiveness, we compared P-GAP with the conventional methods in five test problems. As a result, P-GAP showed better performance than GP and SAP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信