利用稀疏光滑非负矩阵分解进行光谱解混

Changyuan Wu, Chaomin Shen
{"title":"利用稀疏光滑非负矩阵分解进行光谱解混","authors":"Changyuan Wu, Chaomin Shen","doi":"10.1109/Geoinformatics.2013.6626115","DOIUrl":null,"url":null,"abstract":"Hyperspectral unmixing is a process to extract the endmembers and corresponding abundances from hyperspectral data. In this paper, we propose a new unmixing model based on nonnegative matrix factorization. The sparseness and smoothness properties of the abundances matrix are also taken into account. Particularly, the sparseness property is formulated by a parabolic function, and the smoothness property is expressed by the total variation norm. Furthermore, in order to verify the validity of our model, we conduct some experiments on the Cuprite data, and compare our model with some outstanding methods. The results demonstrate that our method is remarkable.","PeriodicalId":286908,"journal":{"name":"2013 21st International Conference on Geoinformatics","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Spectral unmixing using sparse and smooth nonnegative matrix factorization\",\"authors\":\"Changyuan Wu, Chaomin Shen\",\"doi\":\"10.1109/Geoinformatics.2013.6626115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Hyperspectral unmixing is a process to extract the endmembers and corresponding abundances from hyperspectral data. In this paper, we propose a new unmixing model based on nonnegative matrix factorization. The sparseness and smoothness properties of the abundances matrix are also taken into account. Particularly, the sparseness property is formulated by a parabolic function, and the smoothness property is expressed by the total variation norm. Furthermore, in order to verify the validity of our model, we conduct some experiments on the Cuprite data, and compare our model with some outstanding methods. The results demonstrate that our method is remarkable.\",\"PeriodicalId\":286908,\"journal\":{\"name\":\"2013 21st International Conference on Geoinformatics\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 21st International Conference on Geoinformatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/Geoinformatics.2013.6626115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 21st International Conference on Geoinformatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Geoinformatics.2013.6626115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

高光谱解混是从高光谱数据中提取端元和相应丰度的过程。本文提出了一种新的基于非负矩阵分解的解混模型。同时考虑了丰度矩阵的稀疏性和平滑性。其中,稀疏性用抛物函数表示,平滑性用总变分范数表示。此外,为了验证我们的模型的有效性,我们对Cuprite的数据进行了一些实验,并将我们的模型与一些优秀的方法进行了比较。结果表明,我们的方法是显著的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral unmixing using sparse and smooth nonnegative matrix factorization
Hyperspectral unmixing is a process to extract the endmembers and corresponding abundances from hyperspectral data. In this paper, we propose a new unmixing model based on nonnegative matrix factorization. The sparseness and smoothness properties of the abundances matrix are also taken into account. Particularly, the sparseness property is formulated by a parabolic function, and the smoothness property is expressed by the total variation norm. Furthermore, in order to verify the validity of our model, we conduct some experiments on the Cuprite data, and compare our model with some outstanding methods. The results demonstrate that our method is remarkable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信