{"title":"1.5 MHz, 300 mA降压开关稳压器","authors":"Dongsuk Lee, Hyunseok Nam, Youngkook Ahn, J. Roh","doi":"10.1109/SOCDC.2008.4815744","DOIUrl":null,"url":null,"abstract":"A switching regulator yields high efficiency and provides a good current driving capability, making it appropriate as a DC-DC converter for mobile devices. The battery voltage can be converted into the operating voltage of the internal circuit. Furthermore, a negative feedback loop can be constructed to restrict change in dc voltage for a stable supply. A current-mode switching regulator adjusts the inductor current to stabilize the output voltage. The designed 1.5 MHz 300 mA step-down switching regulator is implemented in a standard 0.18-mum CMOS process.","PeriodicalId":405078,"journal":{"name":"2008 International SoC Design Conference","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"1.5 MHz, 300 mA step-down switching regulator\",\"authors\":\"Dongsuk Lee, Hyunseok Nam, Youngkook Ahn, J. Roh\",\"doi\":\"10.1109/SOCDC.2008.4815744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A switching regulator yields high efficiency and provides a good current driving capability, making it appropriate as a DC-DC converter for mobile devices. The battery voltage can be converted into the operating voltage of the internal circuit. Furthermore, a negative feedback loop can be constructed to restrict change in dc voltage for a stable supply. A current-mode switching regulator adjusts the inductor current to stabilize the output voltage. The designed 1.5 MHz 300 mA step-down switching regulator is implemented in a standard 0.18-mum CMOS process.\",\"PeriodicalId\":405078,\"journal\":{\"name\":\"2008 International SoC Design Conference\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International SoC Design Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SOCDC.2008.4815744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International SoC Design Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SOCDC.2008.4815744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A switching regulator yields high efficiency and provides a good current driving capability, making it appropriate as a DC-DC converter for mobile devices. The battery voltage can be converted into the operating voltage of the internal circuit. Furthermore, a negative feedback loop can be constructed to restrict change in dc voltage for a stable supply. A current-mode switching regulator adjusts the inductor current to stabilize the output voltage. The designed 1.5 MHz 300 mA step-down switching regulator is implemented in a standard 0.18-mum CMOS process.