基于贝叶斯自适应加权的混合燃料消耗预测研究

Li Bixin, Li Heng, Yongdong Su, H. Jin
{"title":"基于贝叶斯自适应加权的混合燃料消耗预测研究","authors":"Li Bixin, Li Heng, Yongdong Su, H. Jin","doi":"10.1109/GSIS.2015.7301919","DOIUrl":null,"url":null,"abstract":"In the future informatization battlefield with high technology, POL (petroleum, oil and lubrication) consumption is featured with openness, non-linear, dynamic, uncertainty and self-similarity. Based on Bayes, known probability distribution and deduction of observed data, this paper aims to conduct adaptive weighting for adaptive filtration forecast model; Case-Based-Reasoning (CBR) forecast model, and grey-fractal dimension forecast model. So, to form a combined POL consumption forecast model based on Bayes adaptive weighting, optimize the POL consumption forecast model, and improve the forecast precision of POL consumption.","PeriodicalId":246110,"journal":{"name":"2015 IEEE International Conference on Grey Systems and Intelligent Services (GSIS)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Research on combined POL consumption forecast based on bayes adaptive weighting\",\"authors\":\"Li Bixin, Li Heng, Yongdong Su, H. Jin\",\"doi\":\"10.1109/GSIS.2015.7301919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the future informatization battlefield with high technology, POL (petroleum, oil and lubrication) consumption is featured with openness, non-linear, dynamic, uncertainty and self-similarity. Based on Bayes, known probability distribution and deduction of observed data, this paper aims to conduct adaptive weighting for adaptive filtration forecast model; Case-Based-Reasoning (CBR) forecast model, and grey-fractal dimension forecast model. So, to form a combined POL consumption forecast model based on Bayes adaptive weighting, optimize the POL consumption forecast model, and improve the forecast precision of POL consumption.\",\"PeriodicalId\":246110,\"journal\":{\"name\":\"2015 IEEE International Conference on Grey Systems and Intelligent Services (GSIS)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Grey Systems and Intelligent Services (GSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GSIS.2015.7301919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Grey Systems and Intelligent Services (GSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GSIS.2015.7301919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在未来高技术信息化战场上,石油、油品及润滑油消费具有开放性、非线性、动态性、不确定性和自相似性等特点。基于贝叶斯、已知概率分布和观测数据的推导,对自适应滤波预测模型进行自适应加权;案例推理(CBR)预测模型和灰色分形维数预测模型。因此,形成基于贝叶斯自适应加权的组合油耗预测模型,对油耗预测模型进行优化,提高油耗预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on combined POL consumption forecast based on bayes adaptive weighting
In the future informatization battlefield with high technology, POL (petroleum, oil and lubrication) consumption is featured with openness, non-linear, dynamic, uncertainty and self-similarity. Based on Bayes, known probability distribution and deduction of observed data, this paper aims to conduct adaptive weighting for adaptive filtration forecast model; Case-Based-Reasoning (CBR) forecast model, and grey-fractal dimension forecast model. So, to form a combined POL consumption forecast model based on Bayes adaptive weighting, optimize the POL consumption forecast model, and improve the forecast precision of POL consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信