开放式车间调度问题的遗传算法

Yacine Benziani, I. Kacem, Pierre Laroche
{"title":"开放式车间调度问题的遗传算法","authors":"Yacine Benziani, I. Kacem, Pierre Laroche","doi":"10.1109/CoDIT.2018.8394932","DOIUrl":null,"url":null,"abstract":"In this paper, we present a genetic algorithm for the open shop scheduling problem. We use a simple and efficient chromosome representation based on the job's occurrence and the fitness function reflect the length of the schedule. The solutions obtained after performing the different operators of the genetic algorithm are always feasible. Heuristic approaches are also developed to generate the initial population and to improve the obtained solutions. The algorithm was implemented and computational results show interesting result.","PeriodicalId":128011,"journal":{"name":"2018 5th International Conference on Control, Decision and Information Technologies (CoDIT)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Genetic Algorithm for Open Shop Scheduling Problem\",\"authors\":\"Yacine Benziani, I. Kacem, Pierre Laroche\",\"doi\":\"10.1109/CoDIT.2018.8394932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a genetic algorithm for the open shop scheduling problem. We use a simple and efficient chromosome representation based on the job's occurrence and the fitness function reflect the length of the schedule. The solutions obtained after performing the different operators of the genetic algorithm are always feasible. Heuristic approaches are also developed to generate the initial population and to improve the obtained solutions. The algorithm was implemented and computational results show interesting result.\",\"PeriodicalId\":128011,\"journal\":{\"name\":\"2018 5th International Conference on Control, Decision and Information Technologies (CoDIT)\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 5th International Conference on Control, Decision and Information Technologies (CoDIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CoDIT.2018.8394932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 5th International Conference on Control, Decision and Information Technologies (CoDIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoDIT.2018.8394932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一种求解开放式车间调度问题的遗传算法。我们采用了一种简单有效的基于作业发生次数的染色体表示,适应度函数反映了时间表的长度。执行遗传算法的不同算子后得到的解总是可行的。还开发了启发式方法来生成初始种群并改进得到的解。实现了该算法,计算结果令人感兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genetic Algorithm for Open Shop Scheduling Problem
In this paper, we present a genetic algorithm for the open shop scheduling problem. We use a simple and efficient chromosome representation based on the job's occurrence and the fitness function reflect the length of the schedule. The solutions obtained after performing the different operators of the genetic algorithm are always feasible. Heuristic approaches are also developed to generate the initial population and to improve the obtained solutions. The algorithm was implemented and computational results show interesting result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信