在减小-1模2N+1熔接乘加单元上

C. Efstathiou, I. Voyiatzis
{"title":"在减小-1模2N+1熔接乘加单元上","authors":"C. Efstathiou, I. Voyiatzis","doi":"10.1109/DTIS.2011.5941427","DOIUrl":null,"url":null,"abstract":"In this work the most efficient modulo 2<sup>n</sup>+1 multiplication algorithm for diminished-1 operands proposed to date is extended to compute expressions of the form |A×B + D|<inf>2n+1</inf>. The derived partial products are reduced by a carry save adder tree to two operands, which are finally added by a modulo 2<sup>n</sup>+1 adder. The proposed architecture can find applicability in systems in which fused multiply-add units can accelerate the execution of the targeting algorithms, for example digital signal processing and cryptography systems.","PeriodicalId":409387,"journal":{"name":"2011 6th International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the diminished-1 modulo 2N+1 fused multiply-add units\",\"authors\":\"C. Efstathiou, I. Voyiatzis\",\"doi\":\"10.1109/DTIS.2011.5941427\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work the most efficient modulo 2<sup>n</sup>+1 multiplication algorithm for diminished-1 operands proposed to date is extended to compute expressions of the form |A×B + D|<inf>2n+1</inf>. The derived partial products are reduced by a carry save adder tree to two operands, which are finally added by a modulo 2<sup>n</sup>+1 adder. The proposed architecture can find applicability in systems in which fused multiply-add units can accelerate the execution of the targeting algorithms, for example digital signal processing and cryptography systems.\",\"PeriodicalId\":409387,\"journal\":{\"name\":\"2011 6th International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 6th International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DTIS.2011.5941427\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DTIS.2011.5941427","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文将迄今提出的最有效的模2n+1乘减1操作数算法扩展到计算形式为|A×B + D|2n+1的表达式。导出的偏积通过进位保存加法器树简化为两个操作数,最后通过模数2n+1加法器相加。所提出的架构可以在融合乘加单元可以加速目标算法执行的系统中找到适用性,例如数字信号处理和密码系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the diminished-1 modulo 2N+1 fused multiply-add units
In this work the most efficient modulo 2n+1 multiplication algorithm for diminished-1 operands proposed to date is extended to compute expressions of the form |A×B + D|2n+1. The derived partial products are reduced by a carry save adder tree to two operands, which are finally added by a modulo 2n+1 adder. The proposed architecture can find applicability in systems in which fused multiply-add units can accelerate the execution of the targeting algorithms, for example digital signal processing and cryptography systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信