流量控制中致动器优化的聚类遗传算法

M. Milano, P. Koumoutsakos
{"title":"流量控制中致动器优化的聚类遗传算法","authors":"M. Milano, P. Koumoutsakos","doi":"10.1109/EH.2000.869364","DOIUrl":null,"url":null,"abstract":"Active flow control can provide a leap in the performance of engineering configurations. Although a number of sensor and actuator configurations have been proposed the task of identifying optimal parameters for control devices is based on engineering intuition usually gathered from uncontrolled flow experiments. We propose a clustering genetic algorithm that adaptively identifies critical points in the controlled flow field and adjusts the actuator parameters through an evolutionary process. We demonstrate the capabilities of the algorithm for the fundamental prototypical problem of an actively controlled circular cylinder. The flow is controlled using surface-mounted vortex generators; the actuators used are belts mounted on the cylinder surface, that modify the tangential velocity on the cylinder surface, and jet actuators, that modify the normal velocity component on the surface. The proposed genetic algorithm performs the optimization of the actuators parameters, yielding up to 50% drag reduction. At the same time the genetic algorithm performs a sensitivity analysis of the optima it finds, thus allowing a deeper understanding of the underlying physics and also an estimation of which actuator would be easier to implement in a real experiment.","PeriodicalId":432338,"journal":{"name":"Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A clustering genetic algorithm for actuator optimization in flow control\",\"authors\":\"M. Milano, P. Koumoutsakos\",\"doi\":\"10.1109/EH.2000.869364\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Active flow control can provide a leap in the performance of engineering configurations. Although a number of sensor and actuator configurations have been proposed the task of identifying optimal parameters for control devices is based on engineering intuition usually gathered from uncontrolled flow experiments. We propose a clustering genetic algorithm that adaptively identifies critical points in the controlled flow field and adjusts the actuator parameters through an evolutionary process. We demonstrate the capabilities of the algorithm for the fundamental prototypical problem of an actively controlled circular cylinder. The flow is controlled using surface-mounted vortex generators; the actuators used are belts mounted on the cylinder surface, that modify the tangential velocity on the cylinder surface, and jet actuators, that modify the normal velocity component on the surface. The proposed genetic algorithm performs the optimization of the actuators parameters, yielding up to 50% drag reduction. At the same time the genetic algorithm performs a sensitivity analysis of the optima it finds, thus allowing a deeper understanding of the underlying physics and also an estimation of which actuator would be easier to implement in a real experiment.\",\"PeriodicalId\":432338,\"journal\":{\"name\":\"Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EH.2000.869364\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EH.2000.869364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

主动流量控制可以提供工程配置性能的飞跃。虽然已经提出了许多传感器和执行器配置,但确定控制装置的最佳参数的任务是基于通常从非受控流动实验中收集的工程直觉。提出了一种聚类遗传算法,该算法能够自适应识别被控流场中的临界点,并通过进化过程调整执行器参数。我们证明了该算法对主动控制圆柱的基本原型问题的能力。流动控制采用表面安装涡发生器;所使用的执行器是安装在气缸表面上的皮带,它可以改变气缸表面上的切向速度,而射流执行器可以改变气缸表面上的法向速度分量。提出的遗传算法执行执行器参数的优化,产生高达50%的阻力减少。同时,遗传算法对它找到的最优值进行灵敏度分析,从而可以更深入地了解底层物理,并估计哪种致动器更容易在实际实验中实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A clustering genetic algorithm for actuator optimization in flow control
Active flow control can provide a leap in the performance of engineering configurations. Although a number of sensor and actuator configurations have been proposed the task of identifying optimal parameters for control devices is based on engineering intuition usually gathered from uncontrolled flow experiments. We propose a clustering genetic algorithm that adaptively identifies critical points in the controlled flow field and adjusts the actuator parameters through an evolutionary process. We demonstrate the capabilities of the algorithm for the fundamental prototypical problem of an actively controlled circular cylinder. The flow is controlled using surface-mounted vortex generators; the actuators used are belts mounted on the cylinder surface, that modify the tangential velocity on the cylinder surface, and jet actuators, that modify the normal velocity component on the surface. The proposed genetic algorithm performs the optimization of the actuators parameters, yielding up to 50% drag reduction. At the same time the genetic algorithm performs a sensitivity analysis of the optima it finds, thus allowing a deeper understanding of the underlying physics and also an estimation of which actuator would be easier to implement in a real experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信