智能场景监控系统(ISM)作为外围入侵检测系统(PIDS)的性能极限评估

K. Sage, K. Wickham, J. Boyce, S. Gornall, D. Toulson
{"title":"智能场景监控系统(ISM)作为外围入侵检测系统(PIDS)的性能极限评估","authors":"K. Sage, K. Wickham, J. Boyce, S. Gornall, D. Toulson","doi":"10.1109/CCST.1994.363787","DOIUrl":null,"url":null,"abstract":"Intelligent Scene Monitoring (ISM) is an evolutionary next step beyond basic Video Motion Detection. An ISM system takes video imagery as an input and is expected to alarm only when a specific user-defined event or sequence of events occurs in the scene. It is expected to work in \"busy\" scenes, alarming only on the target patterns of behaviour, to the exclusion of all other activity. A fundamental question arises out of using video as a PIDS input. What levels of performance (in terms of Probability of Detection P/sub D/ and False alarm Rate FAR)? Video (particularly outdoors) is a complex data source and the image processing task for PIDS is non-trivial in the ISM context. We have investigated the performance limits for ISM systems using neural network classifiers in an outdoors \"sterile zone\" application. This paper defines the sterile zone analysis and image processing tasks, the study methodology and presents some feasibility results (obtained using seal data). It presents an academic, and experimentally justifiable, viewpoint on the tractability of the problem given a predetermined system performance.<<ETX>>","PeriodicalId":314758,"journal":{"name":"1994 Proceedings of IEEE International Carnahan Conference on Security Technology","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Estimating performance limits for an intelligent scene monitoring system (ISM) as a perimeter intrusion detection system (PIDS)\",\"authors\":\"K. Sage, K. Wickham, J. Boyce, S. Gornall, D. Toulson\",\"doi\":\"10.1109/CCST.1994.363787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intelligent Scene Monitoring (ISM) is an evolutionary next step beyond basic Video Motion Detection. An ISM system takes video imagery as an input and is expected to alarm only when a specific user-defined event or sequence of events occurs in the scene. It is expected to work in \\\"busy\\\" scenes, alarming only on the target patterns of behaviour, to the exclusion of all other activity. A fundamental question arises out of using video as a PIDS input. What levels of performance (in terms of Probability of Detection P/sub D/ and False alarm Rate FAR)? Video (particularly outdoors) is a complex data source and the image processing task for PIDS is non-trivial in the ISM context. We have investigated the performance limits for ISM systems using neural network classifiers in an outdoors \\\"sterile zone\\\" application. This paper defines the sterile zone analysis and image processing tasks, the study methodology and presents some feasibility results (obtained using seal data). It presents an academic, and experimentally justifiable, viewpoint on the tractability of the problem given a predetermined system performance.<<ETX>>\",\"PeriodicalId\":314758,\"journal\":{\"name\":\"1994 Proceedings of IEEE International Carnahan Conference on Security Technology\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1994 Proceedings of IEEE International Carnahan Conference on Security Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCST.1994.363787\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1994 Proceedings of IEEE International Carnahan Conference on Security Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCST.1994.363787","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

智能场景监控(ISM)是超越基本视频运动检测的进化的下一步。ISM系统以视频图像作为输入,只有当用户自定义的事件或一系列事件在场景中发生时才会发出告警。预计它将在“繁忙”场景中工作,仅对目标行为模式发出警报,而排除所有其他活动。使用视频作为pid输入产生了一个基本问题。什么级别的性能(根据检测概率P/sub / D/和误报率FAR)?视频(尤其是户外视频)是一种复杂的数据源,在ISM上下文中,用于pid的图像处理任务非常重要。我们研究了在室外“无菌区”应用中使用神经网络分类器的ISM系统的性能限制。本文明确了无菌区分析和图像处理任务、研究方法,并给出了一些可行性结果(利用密封数据获得)。它提出了一个学术的、实验上合理的观点,即给定预定系统性能的问题的可跟踪性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating performance limits for an intelligent scene monitoring system (ISM) as a perimeter intrusion detection system (PIDS)
Intelligent Scene Monitoring (ISM) is an evolutionary next step beyond basic Video Motion Detection. An ISM system takes video imagery as an input and is expected to alarm only when a specific user-defined event or sequence of events occurs in the scene. It is expected to work in "busy" scenes, alarming only on the target patterns of behaviour, to the exclusion of all other activity. A fundamental question arises out of using video as a PIDS input. What levels of performance (in terms of Probability of Detection P/sub D/ and False alarm Rate FAR)? Video (particularly outdoors) is a complex data source and the image processing task for PIDS is non-trivial in the ISM context. We have investigated the performance limits for ISM systems using neural network classifiers in an outdoors "sterile zone" application. This paper defines the sterile zone analysis and image processing tasks, the study methodology and presents some feasibility results (obtained using seal data). It presents an academic, and experimentally justifiable, viewpoint on the tractability of the problem given a predetermined system performance.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信