{"title":"通道受限动力-微管生物分子纳米马达","authors":"Y.M. Huang, M. Uppalapati, W. Hancock, T. Jackson","doi":"10.1109/DRC.2004.1367852","DOIUrl":null,"url":null,"abstract":"Kinesins are molecular motors that move along microtubules, and provide a model system for force generation that can be exploited for kinesin-powered nano- and micro-machines. Microtubules are /spl sim/25 nm diameter cylindrical polymers of the protein tubulin and can be nm to /spl mu/m long. Kinesins bind to microtubules and use the energy of ATP hydrolysis to walk unidirectionally along them at speeds of /spl sim/1 /spl mu/m/s. In this work, we reverse the typical biological system and move microtubules along surfaces functionalized with kinesin motors. The microtubules then become potential transport vehicles for sensors and lab-on-a-chip applications. A key requirement for extracting useful work from this system is confinement and control of the movement of microtubules over kinesin coated surfaces.","PeriodicalId":385948,"journal":{"name":"Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC.","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Channel confined kinesin-microtubule biomolecular nanomotors\",\"authors\":\"Y.M. Huang, M. Uppalapati, W. Hancock, T. Jackson\",\"doi\":\"10.1109/DRC.2004.1367852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Kinesins are molecular motors that move along microtubules, and provide a model system for force generation that can be exploited for kinesin-powered nano- and micro-machines. Microtubules are /spl sim/25 nm diameter cylindrical polymers of the protein tubulin and can be nm to /spl mu/m long. Kinesins bind to microtubules and use the energy of ATP hydrolysis to walk unidirectionally along them at speeds of /spl sim/1 /spl mu/m/s. In this work, we reverse the typical biological system and move microtubules along surfaces functionalized with kinesin motors. The microtubules then become potential transport vehicles for sensors and lab-on-a-chip applications. A key requirement for extracting useful work from this system is confinement and control of the movement of microtubules over kinesin coated surfaces.\",\"PeriodicalId\":385948,\"journal\":{\"name\":\"Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC.\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DRC.2004.1367852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DRC.2004.1367852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Kinesins are molecular motors that move along microtubules, and provide a model system for force generation that can be exploited for kinesin-powered nano- and micro-machines. Microtubules are /spl sim/25 nm diameter cylindrical polymers of the protein tubulin and can be nm to /spl mu/m long. Kinesins bind to microtubules and use the energy of ATP hydrolysis to walk unidirectionally along them at speeds of /spl sim/1 /spl mu/m/s. In this work, we reverse the typical biological system and move microtubules along surfaces functionalized with kinesin motors. The microtubules then become potential transport vehicles for sensors and lab-on-a-chip applications. A key requirement for extracting useful work from this system is confinement and control of the movement of microtubules over kinesin coated surfaces.