新势积分方程的快速多极法解

U. M. Gür, Barışcan Karaosmanogglu, Ö. Ergül
{"title":"新势积分方程的快速多极法解","authors":"U. M. Gür, Barışcan Karaosmanogglu, Ö. Ergül","doi":"10.1109/EMCT.2017.8090372","DOIUrl":null,"url":null,"abstract":"A recently introduced potential integral equations for stable analysis of low-frequency problems involving dense discretizations with respect to wavelength are solved by using the fast multipole method (FMM). Two different implementations of FMM based on multipoles and an approximate diagonalization employing scaled plane waves are developed and used for rigorous solutions of low-frequency problems. Numerical results on canonical problems demonstrate excellent stability and solution capabilities of both implementations.","PeriodicalId":104929,"journal":{"name":"2017 IV International Electromagnetic Compatibility Conference (EMC Turkiye)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Fast-multipole-method solutions of new potential integral equations\",\"authors\":\"U. M. Gür, Barışcan Karaosmanogglu, Ö. Ergül\",\"doi\":\"10.1109/EMCT.2017.8090372\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A recently introduced potential integral equations for stable analysis of low-frequency problems involving dense discretizations with respect to wavelength are solved by using the fast multipole method (FMM). Two different implementations of FMM based on multipoles and an approximate diagonalization employing scaled plane waves are developed and used for rigorous solutions of low-frequency problems. Numerical results on canonical problems demonstrate excellent stability and solution capabilities of both implementations.\",\"PeriodicalId\":104929,\"journal\":{\"name\":\"2017 IV International Electromagnetic Compatibility Conference (EMC Turkiye)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IV International Electromagnetic Compatibility Conference (EMC Turkiye)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMCT.2017.8090372\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IV International Electromagnetic Compatibility Conference (EMC Turkiye)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCT.2017.8090372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文采用快速多极子方法求解了低频密集离散问题稳定分析的势积分方程。本文提出了两种不同的基于多极的FMM实现和采用缩放平面波的近似对角化实现,并将其用于低频问题的严格解。对典型问题的数值计算结果表明,这两种实现具有良好的稳定性和求解能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast-multipole-method solutions of new potential integral equations
A recently introduced potential integral equations for stable analysis of low-frequency problems involving dense discretizations with respect to wavelength are solved by using the fast multipole method (FMM). Two different implementations of FMM based on multipoles and an approximate diagonalization employing scaled plane waves are developed and used for rigorous solutions of low-frequency problems. Numerical results on canonical problems demonstrate excellent stability and solution capabilities of both implementations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信