在情感分析中利用机器学习:SentiRobo方法

Vala Ali Rohani, Shahid Shayaa
{"title":"在情感分析中利用机器学习:SentiRobo方法","authors":"Vala Ali Rohani, Shahid Shayaa","doi":"10.1109/ISTMET.2015.7359041","DOIUrl":null,"url":null,"abstract":"Following the rapid evolution of Web 2.0, Sentiment Analysis has become one of the major techniques for mining the social media content. It aims to analyze opinions, sentiments, attitudes, and emotions towards entities such as topics, products, organizations, individuals, communities, and services. This paper presents SentiRobo, a supervised machine learning approach for the process of Sentiment Analysis. An enhanced version of Naive Bayes algorithm is introduced to predict the sentiment polarity of social media large data sets. Empirical evaluation over different twitter datasets with more than 300,000 records reveals the merit of this approach in processing of social media datasets.","PeriodicalId":302732,"journal":{"name":"2015 International Symposium on Technology Management and Emerging Technologies (ISTMET)","volume":"07 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Utilizing machine learning in Sentiment Analysis: SentiRobo approach\",\"authors\":\"Vala Ali Rohani, Shahid Shayaa\",\"doi\":\"10.1109/ISTMET.2015.7359041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Following the rapid evolution of Web 2.0, Sentiment Analysis has become one of the major techniques for mining the social media content. It aims to analyze opinions, sentiments, attitudes, and emotions towards entities such as topics, products, organizations, individuals, communities, and services. This paper presents SentiRobo, a supervised machine learning approach for the process of Sentiment Analysis. An enhanced version of Naive Bayes algorithm is introduced to predict the sentiment polarity of social media large data sets. Empirical evaluation over different twitter datasets with more than 300,000 records reveals the merit of this approach in processing of social media datasets.\",\"PeriodicalId\":302732,\"journal\":{\"name\":\"2015 International Symposium on Technology Management and Emerging Technologies (ISTMET)\",\"volume\":\"07 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Symposium on Technology Management and Emerging Technologies (ISTMET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISTMET.2015.7359041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Symposium on Technology Management and Emerging Technologies (ISTMET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISTMET.2015.7359041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

随着Web 2.0的快速发展,情感分析已经成为挖掘社交媒体内容的主要技术之一。它旨在分析对主题、产品、组织、个人、社区和服务等实体的意见、情绪、态度和情感。本文介绍了SentiRobo,一种用于情感分析过程的监督机器学习方法。引入一种增强版的朴素贝叶斯算法来预测社交媒体大数据集的情感极性。对超过30万条记录的不同twitter数据集的经验评估揭示了这种方法在处理社交媒体数据集方面的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilizing machine learning in Sentiment Analysis: SentiRobo approach
Following the rapid evolution of Web 2.0, Sentiment Analysis has become one of the major techniques for mining the social media content. It aims to analyze opinions, sentiments, attitudes, and emotions towards entities such as topics, products, organizations, individuals, communities, and services. This paper presents SentiRobo, a supervised machine learning approach for the process of Sentiment Analysis. An enhanced version of Naive Bayes algorithm is introduced to predict the sentiment polarity of social media large data sets. Empirical evaluation over different twitter datasets with more than 300,000 records reveals the merit of this approach in processing of social media datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信