基于内容访问控制的语义框架

Sharon Paradesi, Ilaria Liccardi, Lalana Kagal, J. Pato
{"title":"基于内容访问控制的语义框架","authors":"Sharon Paradesi, Ilaria Liccardi, Lalana Kagal, J. Pato","doi":"10.1109/SocialCom.2013.94","DOIUrl":null,"url":null,"abstract":"Social networking sites provide role-or group-based access controls to help users specify their privacy settings. However, information posted on these sites is often intentionally or unintentionally leaked and has caused harm or distress to users. In this paper, we investigate possible improvements to existing implementations by introducing content-based access control policies using Linked Data. Users are able to specify the type of content in the form of tags or keywords in order to indicate which information they wish to protect from certain roles (for example employment), groups or individuals. Providing all possible keywords matching a specific topic may be too time consuming and prone to error for users. Hence using Linked Data we enrich the provided keywords by identifying other meaningful and related concepts. This paper presents the implementation and challenges of developing such a semantic framework. We have qualitatively evaluated this framework using 23 participants. Feedback from participants suggests that such a framework will help ease privacy concerns while posting and sharing social network content.","PeriodicalId":129308,"journal":{"name":"2013 International Conference on Social Computing","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Semantic Framework for Content-Based Access Controls\",\"authors\":\"Sharon Paradesi, Ilaria Liccardi, Lalana Kagal, J. Pato\",\"doi\":\"10.1109/SocialCom.2013.94\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social networking sites provide role-or group-based access controls to help users specify their privacy settings. However, information posted on these sites is often intentionally or unintentionally leaked and has caused harm or distress to users. In this paper, we investigate possible improvements to existing implementations by introducing content-based access control policies using Linked Data. Users are able to specify the type of content in the form of tags or keywords in order to indicate which information they wish to protect from certain roles (for example employment), groups or individuals. Providing all possible keywords matching a specific topic may be too time consuming and prone to error for users. Hence using Linked Data we enrich the provided keywords by identifying other meaningful and related concepts. This paper presents the implementation and challenges of developing such a semantic framework. We have qualitatively evaluated this framework using 23 participants. Feedback from participants suggests that such a framework will help ease privacy concerns while posting and sharing social network content.\",\"PeriodicalId\":129308,\"journal\":{\"name\":\"2013 International Conference on Social Computing\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Social Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SocialCom.2013.94\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Social Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SocialCom.2013.94","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

社交网站提供基于角色或组的访问控制,帮助用户指定他们的隐私设置。然而,在这些网站上发布的信息往往有意或无意地泄露,并对用户造成伤害或困扰。在本文中,我们研究了通过使用关联数据引入基于内容的访问控制策略对现有实现的可能改进。用户能够以标签或关键字的形式指定内容的类型,以便表明他们希望保护哪些信息不受某些角色(例如就业)、团体或个人的影响。对于用户来说,提供与特定主题匹配的所有可能的关键字可能太耗时,而且容易出错。因此,使用关联数据,我们通过识别其他有意义和相关的概念来丰富所提供的关键字。本文介绍了开发这种语义框架的实现和挑战。我们使用23名参与者对该框架进行了定性评估。参与者的反馈表明,这样的框架将有助于缓解在发布和分享社交网络内容时对隐私的担忧。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Semantic Framework for Content-Based Access Controls
Social networking sites provide role-or group-based access controls to help users specify their privacy settings. However, information posted on these sites is often intentionally or unintentionally leaked and has caused harm or distress to users. In this paper, we investigate possible improvements to existing implementations by introducing content-based access control policies using Linked Data. Users are able to specify the type of content in the form of tags or keywords in order to indicate which information they wish to protect from certain roles (for example employment), groups or individuals. Providing all possible keywords matching a specific topic may be too time consuming and prone to error for users. Hence using Linked Data we enrich the provided keywords by identifying other meaningful and related concepts. This paper presents the implementation and challenges of developing such a semantic framework. We have qualitatively evaluated this framework using 23 participants. Feedback from participants suggests that such a framework will help ease privacy concerns while posting and sharing social network content.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信