T. M. Bui, Mona Faraji Niri, Daniel Worwood, T. Dinh, J. Marco
{"title":"电池管理系统实验测试的先进半实物电池仿真平台","authors":"T. M. Bui, Mona Faraji Niri, Daniel Worwood, T. Dinh, J. Marco","doi":"10.1109/ICMECT.2019.8932115","DOIUrl":null,"url":null,"abstract":"Extensive testing of a battery management system (BMS) on real battery storage system (BSS) requires lots of efforts in setting up and configuring the hardware as well as protecting the system from unpredictable faults during the test. To overcome this complexity, a hardware-in-the-loop (HIL) simulation tool is employed and integrated to the BMS test system. By using this tool, it allows to push the tested system up to the operational limits, where may incur potential faults or accidents, to examine all possible test cases within the simulation environment. In this paper, an advanced HIL-based virtual battery module (VBM), consists of one “live” cell connected in series with fifteen simulated cells, is introduced for the purposes of testing the BMS components. First, the complete cell model is built and validated using real world driving cycle while the HIL-based VBM is then exercised under an Urban Dynamometer Driving Schedule (UDDS) driving cycle to ensure it is fully working and ready for the BMS testing in real-time. Finally, commissioning of the whole system is performed to guarantee the stable operation of the system for the BMS evaluation.","PeriodicalId":309525,"journal":{"name":"2019 23rd International Conference on Mechatronics Technology (ICMT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"An Advanced Hardware-in-the-Loop Battery Simulation Platform for the Experimental Testing of Battery Management System\",\"authors\":\"T. M. Bui, Mona Faraji Niri, Daniel Worwood, T. Dinh, J. Marco\",\"doi\":\"10.1109/ICMECT.2019.8932115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extensive testing of a battery management system (BMS) on real battery storage system (BSS) requires lots of efforts in setting up and configuring the hardware as well as protecting the system from unpredictable faults during the test. To overcome this complexity, a hardware-in-the-loop (HIL) simulation tool is employed and integrated to the BMS test system. By using this tool, it allows to push the tested system up to the operational limits, where may incur potential faults or accidents, to examine all possible test cases within the simulation environment. In this paper, an advanced HIL-based virtual battery module (VBM), consists of one “live” cell connected in series with fifteen simulated cells, is introduced for the purposes of testing the BMS components. First, the complete cell model is built and validated using real world driving cycle while the HIL-based VBM is then exercised under an Urban Dynamometer Driving Schedule (UDDS) driving cycle to ensure it is fully working and ready for the BMS testing in real-time. Finally, commissioning of the whole system is performed to guarantee the stable operation of the system for the BMS evaluation.\",\"PeriodicalId\":309525,\"journal\":{\"name\":\"2019 23rd International Conference on Mechatronics Technology (ICMT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 23rd International Conference on Mechatronics Technology (ICMT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMECT.2019.8932115\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 23rd International Conference on Mechatronics Technology (ICMT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMECT.2019.8932115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Advanced Hardware-in-the-Loop Battery Simulation Platform for the Experimental Testing of Battery Management System
Extensive testing of a battery management system (BMS) on real battery storage system (BSS) requires lots of efforts in setting up and configuring the hardware as well as protecting the system from unpredictable faults during the test. To overcome this complexity, a hardware-in-the-loop (HIL) simulation tool is employed and integrated to the BMS test system. By using this tool, it allows to push the tested system up to the operational limits, where may incur potential faults or accidents, to examine all possible test cases within the simulation environment. In this paper, an advanced HIL-based virtual battery module (VBM), consists of one “live” cell connected in series with fifteen simulated cells, is introduced for the purposes of testing the BMS components. First, the complete cell model is built and validated using real world driving cycle while the HIL-based VBM is then exercised under an Urban Dynamometer Driving Schedule (UDDS) driving cycle to ensure it is fully working and ready for the BMS testing in real-time. Finally, commissioning of the whole system is performed to guarantee the stable operation of the system for the BMS evaluation.