具有马尔可夫切换的一维随机Gilpin-Ayala系统的随机持久性和消光性

Lei Liu, Xiaoyan Yu
{"title":"具有马尔可夫切换的一维随机Gilpin-Ayala系统的随机持久性和消光性","authors":"Lei Liu, Xiaoyan Yu","doi":"10.1109/ICICIP.2014.7010307","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the permanence, extinction for one-dimensional stochastic Gilpin-Ayala system with Markovian switching. By using Lyapunov method and some novel techniques, some sufficient conditions are obtained which ensure the permanence, extinction for the system. In the case of η = 1, sufficient and necessary conditions for permanence and extinction are obtained. Two numerical examples are provided to illustrate the effectiveness and the benefits of the proposed result.","PeriodicalId":408041,"journal":{"name":"Fifth International Conference on Intelligent Control and Information Processing","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stochastic permanence and extinction for one-dimensional stochastic Gilpin-Ayala systems with Markovian switching\",\"authors\":\"Lei Liu, Xiaoyan Yu\",\"doi\":\"10.1109/ICICIP.2014.7010307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider the permanence, extinction for one-dimensional stochastic Gilpin-Ayala system with Markovian switching. By using Lyapunov method and some novel techniques, some sufficient conditions are obtained which ensure the permanence, extinction for the system. In the case of η = 1, sufficient and necessary conditions for permanence and extinction are obtained. Two numerical examples are provided to illustrate the effectiveness and the benefits of the proposed result.\",\"PeriodicalId\":408041,\"journal\":{\"name\":\"Fifth International Conference on Intelligent Control and Information Processing\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fifth International Conference on Intelligent Control and Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICIP.2014.7010307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fifth International Conference on Intelligent Control and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICIP.2014.7010307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有马尔可夫切换的一维随机Gilpin-Ayala系统的持久性、消光性。利用李亚普诺夫方法和一些新技术,得到了保证系统持久、消光的充分条件。当η = 1时,得到了持久和消光的充分必要条件。给出了两个数值算例来说明所提结果的有效性和效益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stochastic permanence and extinction for one-dimensional stochastic Gilpin-Ayala systems with Markovian switching
In this paper, we consider the permanence, extinction for one-dimensional stochastic Gilpin-Ayala system with Markovian switching. By using Lyapunov method and some novel techniques, some sufficient conditions are obtained which ensure the permanence, extinction for the system. In the case of η = 1, sufficient and necessary conditions for permanence and extinction are obtained. Two numerical examples are provided to illustrate the effectiveness and the benefits of the proposed result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信