GPU上Top-k查询的性能优化

Tao Luo, Guangzhong Sun, Guoliang Chen
{"title":"GPU上Top-k查询的性能优化","authors":"Tao Luo, Guangzhong Sun, Guoliang Chen","doi":"10.1109/PAAP.2011.11","DOIUrl":null,"url":null,"abstract":"With the development of web search engines, the concern on real-time performance of Top-k queries has attracted more and more attention. The author studies implement of classic algorithm No Random Access Algorithm in order to optimize performance of Top-k queries on GPU. We give a novel GPU algorithm by using the features of CUDA's programming model. Experiment results show that an implementation of the algorithm on one GPU runs more than 7000 times faster than a single core implementation on a latest CPU.","PeriodicalId":213010,"journal":{"name":"2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance Optimization of Top-k Queries on GPU\",\"authors\":\"Tao Luo, Guangzhong Sun, Guoliang Chen\",\"doi\":\"10.1109/PAAP.2011.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of web search engines, the concern on real-time performance of Top-k queries has attracted more and more attention. The author studies implement of classic algorithm No Random Access Algorithm in order to optimize performance of Top-k queries on GPU. We give a novel GPU algorithm by using the features of CUDA's programming model. Experiment results show that an implementation of the algorithm on one GPU runs more than 7000 times faster than a single core implementation on a latest CPU.\",\"PeriodicalId\":213010,\"journal\":{\"name\":\"2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PAAP.2011.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Fourth International Symposium on Parallel Architectures, Algorithms and Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PAAP.2011.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着网络搜索引擎的发展,Top-k查询的实时性越来越受到人们的关注。为了优化Top-k查询在GPU上的性能,研究了经典算法无随机访问算法的实现。利用CUDA编程模型的特点,提出了一种新的GPU算法。实验结果表明,该算法在单个GPU上的实现比在最新CPU上的单核实现快7000倍以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Optimization of Top-k Queries on GPU
With the development of web search engines, the concern on real-time performance of Top-k queries has attracted more and more attention. The author studies implement of classic algorithm No Random Access Algorithm in order to optimize performance of Top-k queries on GPU. We give a novel GPU algorithm by using the features of CUDA's programming model. Experiment results show that an implementation of the algorithm on one GPU runs more than 7000 times faster than a single core implementation on a latest CPU.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信