图像边缘检测中的自适应模糊熵算法

Zhou Jihong, Lu Jun, Lin Xianqing
{"title":"图像边缘检测中的自适应模糊熵算法","authors":"Zhou Jihong, Lu Jun, Lin Xianqing","doi":"10.1109/IMCCC.2012.91","DOIUrl":null,"url":null,"abstract":"To improve the effectiveness of image edge detection, this paper proposed a weighted image edge detection algorithm based on fuzzy entropy. The scheme firstly defines three image metrics to represent image edge: orderliness measure, directivity measure and structural measure. Then it extracts these metrics from images based on fuzzy entropy, and weights three metrics to calculate a confidence degree for edge decision, in which the weighted factors may fully consider the metric impact to detect edges. Finally the algorithm adopts non-maximal image suppression with dynamic threshold to inhibit image pseudo-edge for further optimization. Experiment results illustrate better performance in edge detection with maintaining more image details.","PeriodicalId":394548,"journal":{"name":"2012 Second International Conference on Instrumentation, Measurement, Computer, Communication and Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Adaptive Fuzzy Entropy Algorithm in Image Edge Detection\",\"authors\":\"Zhou Jihong, Lu Jun, Lin Xianqing\",\"doi\":\"10.1109/IMCCC.2012.91\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the effectiveness of image edge detection, this paper proposed a weighted image edge detection algorithm based on fuzzy entropy. The scheme firstly defines three image metrics to represent image edge: orderliness measure, directivity measure and structural measure. Then it extracts these metrics from images based on fuzzy entropy, and weights three metrics to calculate a confidence degree for edge decision, in which the weighted factors may fully consider the metric impact to detect edges. Finally the algorithm adopts non-maximal image suppression with dynamic threshold to inhibit image pseudo-edge for further optimization. Experiment results illustrate better performance in edge detection with maintaining more image details.\",\"PeriodicalId\":394548,\"journal\":{\"name\":\"2012 Second International Conference on Instrumentation, Measurement, Computer, Communication and Control\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Second International Conference on Instrumentation, Measurement, Computer, Communication and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IMCCC.2012.91\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Second International Conference on Instrumentation, Measurement, Computer, Communication and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCCC.2012.91","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了提高图像边缘检测的有效性,提出了一种基于模糊熵的加权图像边缘检测算法。该方案首先定义了三个图像度量来表示图像边缘:有序度量、指向性度量和结构度量。然后基于模糊熵从图像中提取这些指标,并对三个指标进行加权计算边缘决策的置信度,其中加权因子可以充分考虑指标对边缘检测的影响。最后,算法采用非极大值图像抑制和动态阈值抑制图像伪边缘,进一步优化。实验结果表明,在保留更多图像细节的情况下,边缘检测具有更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Adaptive Fuzzy Entropy Algorithm in Image Edge Detection
To improve the effectiveness of image edge detection, this paper proposed a weighted image edge detection algorithm based on fuzzy entropy. The scheme firstly defines three image metrics to represent image edge: orderliness measure, directivity measure and structural measure. Then it extracts these metrics from images based on fuzzy entropy, and weights three metrics to calculate a confidence degree for edge decision, in which the weighted factors may fully consider the metric impact to detect edges. Finally the algorithm adopts non-maximal image suppression with dynamic threshold to inhibit image pseudo-edge for further optimization. Experiment results illustrate better performance in edge detection with maintaining more image details.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信