脉冲激发下多孔硅的光致发光

Z. Lukasiak, M. Murawski, W. Bala
{"title":"脉冲激发下多孔硅的光致发光","authors":"Z. Lukasiak, M. Murawski, W. Bala","doi":"10.1117/12.425421","DOIUrl":null,"url":null,"abstract":"Photoluminescence time resolved spectra (PL-TRS) and decay curves of photoluminescence (PL-DC) in the wavelength range 400-850 nm in micro and nanosecond time range at different temperatures (10K-room) on anodically etched boron doped porous silicon are presented. PL-TRS exhibit multiband structure and can be decomposed as a sum of few Gaussians. Positions of gaussian emission bands depend on temperature and change similar to thermal profile of the energy gap of the bulk silicon. PL-DC have multi exponential shape. Relaxation times depend on wavelength of the observation and temperature. At low temperature decay times dramatically increase (from few microsecond(s) at 300K to some hundred microsecond(s) ) and short component in nanosecond range has been observed. To explain our results we assumed model in which the multi barrier structure is formed by Si crystal (quantum well) surrounded by Si crystallites with diameters in the nanometer range (barrier region). The visible photoluminescence originates from radiative recombination between discrete energy levels in quantum well regions. Short component of decay at lowest temperatures is connected to non-radiative Auger relaxation inside porous silicon structures.","PeriodicalId":365405,"journal":{"name":"International Conference on Solid State Crystals","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Photoluminescence of porous silicon under pulsed excitation\",\"authors\":\"Z. Lukasiak, M. Murawski, W. Bala\",\"doi\":\"10.1117/12.425421\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photoluminescence time resolved spectra (PL-TRS) and decay curves of photoluminescence (PL-DC) in the wavelength range 400-850 nm in micro and nanosecond time range at different temperatures (10K-room) on anodically etched boron doped porous silicon are presented. PL-TRS exhibit multiband structure and can be decomposed as a sum of few Gaussians. Positions of gaussian emission bands depend on temperature and change similar to thermal profile of the energy gap of the bulk silicon. PL-DC have multi exponential shape. Relaxation times depend on wavelength of the observation and temperature. At low temperature decay times dramatically increase (from few microsecond(s) at 300K to some hundred microsecond(s) ) and short component in nanosecond range has been observed. To explain our results we assumed model in which the multi barrier structure is formed by Si crystal (quantum well) surrounded by Si crystallites with diameters in the nanometer range (barrier region). The visible photoluminescence originates from radiative recombination between discrete energy levels in quantum well regions. Short component of decay at lowest temperatures is connected to non-radiative Auger relaxation inside porous silicon structures.\",\"PeriodicalId\":365405,\"journal\":{\"name\":\"International Conference on Solid State Crystals\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Solid State Crystals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.425421\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Solid State Crystals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.425421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

给出了掺杂硼的阳极蚀刻多孔硅在不同温度(10K-room)下,400 ~ 850 nm波长范围内的光致发光时间分辨光谱(PL-TRS)和纳秒时间范围内的光致发光(PL-DC)衰减曲线。PL-TRS具有多波段结构,可以分解为几个高斯信号的和。高斯发射带的位置随温度的变化而变化,类似于体硅能隙的热分布。PL-DC具有多指数形状。弛豫时间取决于观测波长和温度。在低温下,衰减时间急剧增加(从300K时的几微秒到几百微秒),并且在纳秒范围内缩短。为了解释我们的结果,我们假设了一个模型,在这个模型中,硅晶体(量子阱)被直径在纳米范围内的硅晶体(势垒区)所包围,形成多势垒结构。可见光致发光源于量子阱中离散能级之间的辐射复合。最低温度下的短分量衰变与多孔硅结构内部的非辐射俄歇弛豫有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Photoluminescence of porous silicon under pulsed excitation
Photoluminescence time resolved spectra (PL-TRS) and decay curves of photoluminescence (PL-DC) in the wavelength range 400-850 nm in micro and nanosecond time range at different temperatures (10K-room) on anodically etched boron doped porous silicon are presented. PL-TRS exhibit multiband structure and can be decomposed as a sum of few Gaussians. Positions of gaussian emission bands depend on temperature and change similar to thermal profile of the energy gap of the bulk silicon. PL-DC have multi exponential shape. Relaxation times depend on wavelength of the observation and temperature. At low temperature decay times dramatically increase (from few microsecond(s) at 300K to some hundred microsecond(s) ) and short component in nanosecond range has been observed. To explain our results we assumed model in which the multi barrier structure is formed by Si crystal (quantum well) surrounded by Si crystallites with diameters in the nanometer range (barrier region). The visible photoluminescence originates from radiative recombination between discrete energy levels in quantum well regions. Short component of decay at lowest temperatures is connected to non-radiative Auger relaxation inside porous silicon structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信